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Abstract: With the rapid development of computer vision, vision cameras have been used as non-
contact sensors for structural displacement measurements. However, vision-based techniques are 
limited to short-term displacement measurements because of their degraded performance under 
varying illumination and inability to operate at night. To overcome these limitations, this study de-
veloped a continuous structural displacement estimation technique by combining measurements 
from an accelerometer with vision and infrared (IR) cameras collocated at the displacement estima-
tion point of a target structure. The proposed technique enables continuous displacement estimation 
for both day and night, automatic optimization of the temperature range of an infrared camera to 
ensure a region of interest (ROI) with good matching features, and adaptive updating of the refer-
ence frame to achieve robust illumination–displacement estimation from vision/IR measurements. 
The performance of the proposed method was verified through lab-scale tests on a single-story 
building model. The displacements were estimated with a root-mean-square error of less than 2 mm 
compared with the laser-based ground truth. In addition, the applicability of the IR camera for dis-
placement estimation under field conditions was validated using a pedestrian bridge test. The pro-
posed technique eliminates the need for a stationary sensor installation location by the on-site in-
stallation of sensors and is therefore attractive for long-term continuous monitoring. However, it 
only estimates displacement at the sensor installation location, and cannot simultaneously estimate 
multi-point displacements which can be achieved by installing cameras off-site. 

Keywords: displacement estimation; infrared camera; vision camera; accelerometer; multirate 
adaptive Kalman filter; continuous monitoring 
 

1. Introduction 
Displacement is a critical parameter that indicates the level of deformation or move-

ment of civil infrastructure [1,2]. Measuring displacement helps to identify potential 
safety hazards and structural issues that could lead to failure or collapse. By monitoring 
the displacement, engineers can determine whether a structure is still within the accepta-
ble limits of operation or if it requires repair or reinforcement. A linear variable displace-
ment transducer (LVDT) is commonly used for bridge displacement measurement [3]. 
However, its usage requires the installation of a scaffold beneath the bridge, which may 
not be feasible for river crossings and overpass bridges where traffic flow interruptions 
are not permitted. Although real-time kinematic global navigation satellite systems (RTK-
GNSS) have been widely applied for the continuous monitoring of structural displace-
ment in large-scale bridges [4] and tall buildings [5], their precision and sampling rate are 
restricted, making them inadequate for monitoring small- or medium-scale structures. 
Though satellite-based interferometry techniques are advantageous for full-field displace-
ment measurements for landslides [6] and bridges [7], they are limited to static displace-
ment monitoring. Owing to the limitations of current displacement sensors, 
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accelerometers are commonly used for the continuous long-term monitoring of structures. 
However, the displacements estimated from acceleration measurements do not include 
the critical static and pseudo static components of structural displacement [8,9]. 

In addition to the abovementioned contact-type displacement measurement tech-
niques, a range of noncontact displacement measurement techniques have been devel-
oped based on laser Doppler vibrometers (LDV) [10], radar systems [11,12], and vision 
cameras [13,14]. LDV and radar systems emit laser light and electromagnetic waves, re-
spectively, toward the surface of a structure and subsequently receive reflected signals. 
These systems can accurately determine the displacement of a structure by measuring the 
time delay between the emission and reception of a signal. Although both LDV and radar 
systems can achieve high-precision measurements, their high cost limits their widespread 
use. On the other hand, vision cameras capture images of the structure and determine 
structural displacement by tracking changes in the structure position in these images. Alt-
hough vision cameras are relatively inexpensive, they are sensitive to environmental con-
ditions such as light and weather, and less accurate and efficient than LDV and radar sys-
tems. In addition, all sensors should be fixed at a stationary location, which makes them 
unsuitable for continuous long-term displacement monitoring rather than short-term 
measurements. 

In recent years, combinations of different types of sensors have become increasingly 
popular for estimating the structural displacements [15,16]. Such a combination can pro-
vide complementary information and help improve the accuracy and efficiency of struc-
tural displacement estimation. Accelerometers are commonly fused with other types of 
sensors [17–21]. The authors previously explored the fusion of the vision camera and ac-
celerometer for structural displacement estimation [22]. The vision camera and accelerom-
eter were installed at a target structure, with the accelerometer measuring the structural 
acceleration at a high sampling rate, whereas the vision camera tracked a fixed target for 
the surroundings of the structure at a low sampling rate. Because these two sensors are 
installed at the same location, their data can be easily fused, resulting in highly accurate 
and highly efficient displacement estimation at a high sampling rate. In addition, the re-
quirement for a stationary location was eliminated by the direct installation of these two 
sensors on the target structure, making these techniques more appropriate for long-term 
continuous displacement estimation. Nevertheless, vision cameras are incapable of work-
ing at night, which limits the practical application of the proposed technique to long-term 
continuous structural displacement monitoring. 

In this study, a structural displacement estimation technique was developed by fus-
ing accelerometers with vision and infrared (IR) cameras, particularly for long-term con-
tinuous displacement monitoring. Three sensors were installed at the displacement esti-
mation point of the target structure, and their initial short-period measurements were first 
used to automatically estimate the scale factors required for unit conversion and to opti-
mize the temperature range of the selected region of interest (ROI) for the IR camera. The 
proposed technique then continuously estimates the structural displacements. Specifi-
cally, it combines a vision camera and accelerometer to estimate the structural displace-
ment during the day and an IR camera and accelerometer to estimate the structural dis-
placement during the night. In addition, an adaptive reference frame updating algorithm 
was proposed and applied to enhance the robustness of the proposed technique against 
variations in illumination in the vision camera and temperature in the IR camera. The 
main contributions of this study are (1) day and night continuous displacement estimation 
by fusing the accelerometer, IR, and vision cameras; (2) automated optimization of the 
ROI temperature range of the IR camera for displacement estimation during the night; 
and (3) improved robustness of vision-based displacement estimation against variations 
in illumination in the vision camera and temperature in the IR camera by adaptively up-
dating the reference frame. 

The remainder of this paper is organized as follows: The proposed continuous dis-
placement estimation technique is described in Section 2. The performance of the 
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proposed technique was experimentally validated using an indoor single-story building 
model test and outdoor pedestrian bridge test, as described in Section 3. Lastly, the con-
cluding remarks are presented in Section 4. 

2. Development of Structural Displacement Estimation Technique by Fusing Accel-
erometer, Vision, and IR Cameras 

This study proposes a continuous displacement estimation method in which acceler-
ation measurements are combined with collected vision and IR images for day and night, 
respectively. The accelerometer, vision, and IR cameras were mounted at the measure-
ment point of the target structure, and the displacement was estimated, as shown in Fig-
ure 1a. The accelerometer measured the acceleration of the target structure at a high sam-
pling rate. However, assuming that the natural targets in the surroundings of the target 
structures are stationary, the vision camera and IR camera track a natural target with rich 
features during the day and a natural target with a distinct temperature distribution dur-
ing the night, both with a low sampling rate. A low sampling displacement was first esti-
mated from the vision/IR images with adaptive reference frame updating, and the image-
based displacement was then fused with the high-sampling acceleration using an adaptive 
multirate Kalman filter. Considering that the movements originally estimated from vi-
sion/IR images are in pixel units, the scale factors required to convert these pixel unit 
movements into structural displacements in a physical unit should be estimated in ad-
vance. Additionally, the displacement estimation performance of IR cameras depends on 
the selection of the temperature range, and it is necessary to optimize the temperature 
range for better displacement estimation performance. Therefore, the proposed technique 
is divided into two stages, as shown in Figure 1b: (1) automatic initial calibration for scale 
factor estimation and temperature range optimization (Section 2.1) and (2) continuous dis-
placement estimation (Section 2.2). 
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Figure 1. Overview of proposed displacement estimation technique: (a) sensor setup and (b) overall 
flowchart for continuous displacement estimation. 

2.1. Stage I: Automated Initial Calibration 
2.1.1. Scale Factor Estimation for Vision and IR Cameras 

In this study, an acceleration-aided algorithm [22] was adopted to automatically es-
timate the scale factors required for image-based displacement estimation. As shown in 
Figure 2, translation 𝑑 was first estimated from the collected short-term vision/IR images 
after ROI cropping and feature matching. In this study, the speeded-up robust features 
(SURF) [23] algorithm was used owing to its high accuracy and low computational cost. 
Subsequently, a bandpass filter was applied to 𝑑 and the displacement 𝑢௔ was estimated 
from the double integration of the acceleration measurement. The lower cutoff frequency 
of the filter was set to be sufficiently high to remove the low-frequency drift in 𝑢௔, and the 
upper cutoff frequency was set to 1/10 of the vision and IR camera sampling rate [24]. 
Finally, the scale factor 𝛼 was estimated as the ratio of filtered translation 𝑑௙ and filtered 
displacement 𝑢௔௙ using a least-squares estimation (LSE) algorithm. Before applying the 
LSE algorithm, 𝑢௔௙ was down-sampled to match the sampling rate with 𝑑௙. 
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Figure 2. Flowchart of automated scale factor estimation algorithm [22]. 

2.1.2. Optimization of the Temperature Range for IR Camera 
(a) Necessity of fixing and optimizing the temperature range 

An IR image is essentially a temperature map, in which different colors represent 
different temperatures. If the target within the ROI has a stable and distinct temperature 
distribution, the IR-based displacement can be estimated to be the same as the vision-
based displacement by applying a feature-matching algorithm between the reference and 
current ROIs. However, the difference from vision-based displacement estimation is that 
only temperature data are contained in an IR image. Therefore, when there is an external 
extreme heat source in the ROI, the color distribution within the ROI changes, as shown 
in Figure 3a, causing matching failure or no matching between the reference and the cur-
rent ROIs. To reduce the above problem, the temperature range of the IR camera was fixed. 

 
Figure 3. Example of region of interest (ROI) feature-matching results with heat source: (a) before 
fixing temperature range and (b) after fixing temperature range. 

Figure 3b shows that the temperature range can be fixed using the maximum and 
minimum temperatures with the field of view (FOV) (𝑇௠௔௫ி  and 𝑇௠௜௡ி ); however, relatively 
small temperature variations within the ROI cause less distinct features. On the other 
hand, the temperature range can also be fixed using the maximum and minimum temper-
atures with the ROI (𝑇௠௔௫ோ  and 𝑇௠௜௡ோ ). Although more distinct features can be detected, 
they are not stable owing to the temperature measurement noise. Therefore, it is necessary 
to optimize the temperature range to ensure that sufficient and stable distinct features are 
available within the ROI. 
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(b) Working principle of automated optimization of the temperature range 
The basic idea for temperature range optimization is to calculate the root-mean-

square errors (RMSEs) between the acceleration- and IR-based displacements in various 
temperature ranges. The optimal temperature range was selected when the RMSE was the 
smallest. The detailed process of the proposed algorithm consists of three steps: 

Step 1: First, the differences between 𝑇௠௜௡ோ   and 𝑇௠௜௡ி   and between 𝑇௠௔௫ோ   and 𝑇௠௔௫ி  
were calculated and divided into 𝑀 equal parts, as follows: 𝑙 = 𝑇௠௜௡ோ − 𝑇௠௜௡ி𝑀 , ℎ =  𝑇௠௔௫ி − 𝑇௠௔௫ோ𝑀 . (1)

where 𝑀 is a constant value to divide the temperature difference between FOV and ROI 
into 𝑀+1 equal parts. Then, (𝑀 + 1)ଶ potential temperature ranges (𝜹) are generated as 
follows (Figure 4a): 𝜹(𝑚, 𝑛) =  ሾ𝑇௠௜௡ோ − 𝑙(𝑚 − 1), 𝑇௠௔௫ோ + ℎ(𝑛 − 1)ሿ,  𝑚 = (1, ⋯ , 𝑀 + 1), 𝑛 = (1, ⋯ , 𝑀 + 1). 

(2)

 
Figure 4. Automated optimization of the temperature range: (a) step 1: define potential temperature 
ranges (𝜹) with variables 𝑚 and 𝑛, (b) step 2: calculate root-mean-square error (RMSE) using initial 𝜹(1,1), and (c) step 3: select the optimized temperature range by repeating step 2 with different 𝜹. 

Step 2: The displacement was first estimated from the IR measurement using the first 
temperature range (𝜹(1,1)) and the estimated scale factor and then bandpass-filtered to 
obtain the filtered IR-based displacement (𝑢ூ௙). The filtered displacement was estimated 
from the acceleration measurements using double integration and bandpass filtering. Sub-
sequently, the RMSE between the filtered acceleration and IR-based displacements was 
calculated (Figure 4b). 

Step 3: Step 2 was repeated for all (𝑀 + 1)ଶ potential temperature ranges. The tem-
perature range with the smallest RMSE became the optimized temperature range 
(𝜹෡(𝑚, 𝑛)). After that, 𝜹෡(𝑚, 𝑛) was applied to IR-based displacement estimation in Stage II. 
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2.2. Stage II: Continuous Displacement Estimation Using Image-Based Robust Displacement 
Estimation Algorithm and Adaptive Multirate Kalman Filter (AMKF) 

After the initial calibration, the displacement was continuously estimated by fusing 
the vision/IR-based displacement with asynchronized acceleration measurements using 
an adaptive multirate Kalman filter (AMKF) [22] developed by our group. The transition 
between vision and IR cameras is automatically achieved, and the reference frame is adap-
tively updated to improve the robustness of vision-based displacement estimation against 
illumination variations and IR-based displacement estimation against temperature varia-
tions, which are unavoidable in long-term continuous displacement estimation. 

2.2.1. AMKF-Based Fusion of Asynchronous Image and Acceleration Measurement 
Asynchronous accelerations and images were fused using the AMKF, which was for-

mulated for three different time-step types, as shown in Figure 5. In a type-I time step, 
only acceleration is used, and the state vector (𝒙ෝ௭ା), which consists of displacement and 
velocity, is estimated using the previous time-step state vector (𝒙ෝ௭ିଵା  ) and acceleration 
(𝑎௭ିଵ). 

 
Figure 5. Overview of AMKF-based structural displacement estimation using accelerometer, vision, 
and infrared (IR) cameras. 

𝒙ෝ௭ା =  𝒙ෝ௭ି = 𝑨(∆𝑡௔) 𝒙ෝ௭ିଵା + 𝑩(∆𝑡௔)𝑎௭ିଵ; 𝑨(∆𝑡௔) = ቂ1 ∆𝑡௔0 1 ቃ ; 𝑩(∆𝑡௔) = ቈ∆௧మೌଶ∆𝑡቉, (3)
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where ∆𝑡௔ denotes the time interval between the acceleration measurements. Next, the 
covariance (𝑷෡௭ା) of 𝒙ෝ௭ା is calculated as follows: 𝑷෡௭ା = 𝑷෡௭ି = 𝑨(∆𝑡௔)𝑷෡௭ିଵା 𝑨𝑻(∆𝑡௔) + 𝑞𝑩(∆𝑡௔)𝑩𝑻(∆𝑡௔), (4)

where 𝑞 denotes the noise variance in the acceleration measurements. 
In a type-II time step, the prior state (𝒚ෝ௜ି ) and its covariance (𝑮෡௜ି ) are estimated as 

follows: 𝒚ෝ௜ି = 𝑨൫∆𝑡௜,௭൯ 𝒙ෝ௭ା + 𝑩൫∆𝑡௜,௭൯𝑎௭, 𝑮෡௜ି = 𝑨(∆𝑡௜,௭)𝑷෡௭ା𝑨𝑻(∆𝑡௜,௭) + 𝑞𝑩(∆𝑡௜,௭)𝑩𝑻(∆𝑡௜,௭); ∆𝑡௜,௭ = 𝑖∆𝑡ௗ − 𝑧∆𝑡௔, 
(5)

where ∆𝑡ௗ  denotes the time interval between image measurements. Subsequently, the 
noise variance (𝑅௜) in the 𝑖th image-based displacement (𝑢௜) is expressed as follows [25]. 
The detailed process for estimating 𝑢௜ is described in Section 2.2.2. 𝑅௜ = 𝛽𝑅௜ିଵ + (1 − 𝛽)൫𝜂௜ଶ − 𝑯𝑮෡௜ି 𝑯𝑻൯, 0 < 𝛽 < 1,  𝜂௜ = 𝑢௜ − 𝑯𝒚ෝ௜ି , 𝑯 =  ሾ1 0ሿ், 

(6)

where 𝛽 and 𝜂 denote the forgetting and innovation factors, respectively. The Kalman 
gain (𝑲) is calculated as 𝑲 = 𝑮෡௜ି 𝑯்൫𝑯𝑮෡௜ି 𝑯் + 𝑅௜൯ିଵ. (7)

Finally, 𝒚ෝ௜ି  and 𝑮෡௜ି  are updated in a posterior process using K and 𝑢௜ as follows: 𝒚ෝ௜ା = (𝑰 − 𝑲𝑯)𝒚ෝ௜ି + 𝑲𝑢௜, 𝑮෡௜ା = (𝑰 − 𝑲𝑯)𝑮෡௜ି . 
(8)

In a type-III time step, the state vector (𝒙ෝ௭ାଵା ) is estimated at the next acceleration time 
step (∆𝑡௭ାଵ). Details of the AMKF can be found in a study by Ma et al. [22] 𝒙ෝ௭ାଵା = 𝒙ෝ௭ାଵି = 𝑨൫∆𝑡௭ାଵ,௜൯𝒚ෝ௜ା + 𝑩൫∆𝑡௭ାଵ,௜൯𝑎௭ ;  ∆𝑡௭ାଵ,௜ = (𝑧 + 1)∆𝑡௔ − 𝑖∆𝑡ௗ  (9)

2.2.2. Image-Based Robust Displacement Estimation with Adaptive Reference Frame Up-
dating 
(a) A brief review of the existing algorithm with a fixed reference frame and its limita-

tions 
When estimating displacement from visual measurements using a feature-matching 

algorithm, existing studies [22] set the first ROI as the reference ROI, and the displacement 
at each time step was estimated by matching the current and reference ROIs. Therefore, 
stable illumination conditions are required for a successful displacement estimation. This 
is not a problem for short-period displacement estimation, which was the focus of these 
existing studies. However, illumination variation is unavoidable in long-term continuous 
displacement estimation and may cause insufficient matches, as shown in Figure 6a, mak-
ing continuous displacement estimation impossible. The IR-based displacement estima-
tion suffers from the same issue. Unavoidable temperature variations may result in an 
insufficient match, as shown in Figure 6b. Therefore, an algorithm that improves the ro-
bustness of vision-based displacement estimation against illumination variations and IR-
based displacement estimation against temperature variations is essential for a long-term 
continuous displacement estimation. 
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Figure 6. Overview of existing image-based displacement estimation algorithm [22] using a fixed 
reference frame and its limitation in long-term continuous displacement estimation: (a) vision meas-
urement with illumination variation and (b) IR measurement with temperature variation. 

(b) Working principle of adaptive reference frame updating 
This study proposes an adaptive reference frame updating algorithm to improve the 

robustness of vision-based displacement estimation against illumination variations and 
IR-based displacement estimation against temperature variations. The basic principle of 
the proposed algorithm is to adaptively update the reference frame when the detected 
matches are insufficient, and update the reference frame back to the first frame if sufficient 
matches can be detected. 

Figure 7 shows the working principle of the proposed algorithm. First, after obtain-
ing the 𝑖th image from the vision/IR cameras, the ROI was cropped from the FOV. Fea-
ture matching was then performed between the 𝑖th ROI and the current reference ROI 
(i.e., the 𝑟th ROI) and 𝑁௜௥ matches were obtained. Note that the initial reference ROI is 
the first ROI. Owing to the relatively large variation in the number of matches, even with 
stable illumination, a moving average filter with an order of (𝑄 + 1) was applied to 𝑁௜௥ to 
obtain an average value (𝑁ഥ௜ିொ,௜௥ ). 
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Figure 7. Flowchart of proposed displacement estimation algorithm for estimating displacement 
from vision/IR images with adaptive reference ROI updating. 

𝑁ഥ௜ିொ,௜௥ = ቌ 1𝑄 + 1 ෍ 𝑁௝௥ ௜
௝ୀ௜ିொ ቍ (10)

If 𝑁ഥ௜ିொ,௜௥  is larger than the threshold (𝑁௥்), it is not necessary to update the reference 
frame, and the 𝑖th image-based displacement (𝑢௜ଵ) is calculated as 𝑢௜ଵ = 𝛼𝑑௜௥ + 𝑢௥ଵ, (11)

where 𝑑௜௥ is the relative translation between the 𝑖th and reference ROIs and 𝑢௥ଵ is the 
relative displacement between the 1st and reference ROIs. 𝛼 denotes the scale factor for 
vision/IR measurements. Note that 𝑁் was determined as follows: 

𝑁௥் = ቌ1𝐷 ෍ 𝑁௝௥ ௥ା஽
௝ୀ௥ାଵ ቍ − 3𝜎ൣ𝑁௝௥| 𝑗 = (𝑟 + 1), ⋯ , (𝑟 + 𝐷)൧. (12)

Otherwise, feature matching was performed between the 1st and 𝑖th ROIs, and 𝑁௜ଵ 
matches were obtained. If 𝑁௜ଵ is larger than a threshold (𝑁ଵ்), the reference frame is up-
dated to the first frame, and 𝑢௜ଵ is estimated as 𝑢௜ଵ = 𝛼𝑑௜ଵ, (13)

where 𝑑௜ଵ  is the relative translation between the 𝑖th  and 1st  ROIs, and 𝑁ଵ்  is deter-
mined as 
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𝑁ଵ் = ቌ1𝐷 ෍ 𝑁௝ଵ ஽ାଵ
௝ୀଶ ቍ − 3𝜎ൣ𝑁௝ଵ| 𝑗 = 2, ⋯ , (𝐷 + 1)൧. (14)

Denoting 𝑘 as the difference in the number of frames between the 𝑖th frame and 
the reference frame, reference frame updating is executed differently in the three cases by 
comparing the rules of 𝑘 and 𝐷 as follows: 

Case 1: 𝑘  is less than 𝐷 . The reference frame changes only within the prior D 
timesteps. The 𝑖୲୦ ROI and reference ROI are directly matched, and 𝑖th image-based dis-
placement (𝑢௜) is calculated using Equation (11). 

Case 2: 𝑘 = 𝐷. Here, the threshold value is calculated by applying Equation (12) us-
ing 𝐷  frames sequentially after the reference frame. The subsequent process was the 
same as that for Case 1. 

Case 3: 𝑘 > 𝐷. If 𝑁ഥ௜ି஽,௜௥  is larger than the threshold, 𝑢௜ can be estimated using (11). 
However, if 𝑁ഥ௜ି஽,௜௥  is smaller, then the reference frame is updated to the first frame. The 
number of matches (𝑁௜ଵ) compared to the first frame was compared to the threshold value 
(𝑁ଵ்). If 𝑁௜ଵ was larger than 𝑁ଵ், 𝑢௜ was calculated using Equation (13); however, if 𝑁௜ଵ 
was less than 𝑁ଵ் , the reference frame was updated to the (𝑖 − 1)th  frame. Finally, 𝑢௜ 
was estimated using (11) with the updated reference frame. 

Figure 8 shows an example of the threshold updating process. The threshold value 
(𝑁ଵ்) was initially determined using 𝐷 frames after the first frame. In the ith frame, the 
moving-averaged feature-matching number (𝑁ഥ௜ିொ,௜ଵ ) is less than 𝑁ଵ். Therefore, the refer-
ence frame is updated to the (𝑖 − 1)th frame and the threshold is updated (𝑁௥்) using 𝐷 
frames after the (𝑖 − 1)th frame. 

 
Figure 8. Example of reference frame and threshold updating process. 

The proposed algorithm was applied separately to vision and IR images. A vision 
camera was used during the day and an IR camera was used during the night. However, 
vision and IR images were acquired simultaneously during the transition time (e.g., day-
to-night or night-to-day) and the numbers of matches were calculated respectively. Note 
that the transition time can be set to approximately 1 h before and after the beginning of 
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the morning nautical twilight (BMNT) and the end of evening nautical twilight (EENT). 
Therefore, at the transition time, the robust number of features matching from the vision 
and IR images can be calculated as 𝑁ഥ௏  and 𝑁ഥூ , respectively, and then compared. Dis-
placement was estimated by selecting an application (vision or IR) with a large matching 
number. 

3. Experimental Validation 
To validate the performance of the proposed technique, a laboratory-scale test was 

conducted on a single-story building model with various excitation signals considering 
illumination and temperature variations, as described in Section 3.1, and a field experi-
ment was conducted on a pedestrian bridge. Note that long-term measurement was im-
possible for the pedestrian bridge owing to safety issues, and it was difficult to consider 
the illumination and temperature variations in the field test. Therefore, only the applica-
bility of the IR camera for displacement estimation under field conditions was verified in 
Section 3.2 by estimating the bridge displacement for a short period under stable illumi-
nation and temperature. In both tests, the displacement estimation performance of the 
proposed technique was compared to that of an existing technique [22] to highlight its 
superiority. 

3.1. Lab-Scale Test Using Single-Story Building Model Test 
The proposed technique was first validated using a single-story building model test, 

the setup of which is illustrated in Figure 9a. A single-story building model composed of 
stainless steel was firmly attached onto an Electro-Seis APS 400 vibration shaker, which 
produced a horizontal movement of the building model. A Kinemetrix EpiSensor ES-U2 
uniaxial force-balanced accelerometer, Insta360 Pro2 camera, and FLIR A655sc IR cameras 
were mounted on the top of the building model. A PSV-400-M4 LDV was used to measure 
the reference displacement of the building model with a resolution of 0.5 pm (Figure 9b). 
The sampling frequency for the vision and IR cameras was set to 30 Hz, and the accelera-
tion and LDV measurements were sampled at 100 Hz. For ideal displacement estimation, 
a sufficient number of feature points should be detected within the ROI and the transla-
tions of all these features should be close to each other. In this study, a stone and two fans 
placed approximately 2 m from the building model were used as targets for the vision and 
IR cameras, respectively, as shown in Figure 9b,c. A cup of hot water and a cup of cold 
water were placed approximately 3 m away from the targets to simulate objects with high 
and low temperatures, and were included in the FOV of the IR camera, as shown in Figure 
9d. Seven cases were considered to validate the proposed technique fully, as listed in Table 
1. Note that the spatial resolutions of the vision and IR camera were 2880 by 3840 and 640 
by 240, respectively, and all recorded images by the fisheye camera (insta360 pro 2) were 
calibrated by MATLAB built-in toolbox [26] for distortion correction. 
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Figure 9. Overview of lab-scale test on a single-story building model: (a) front view of experiment 
setup, (b) top view of the experiment setup, (c) targets for vision and IR cameras, and (d) cropped 
IR image. 

Table 1. Descriptions of seven lab-scale test cases. 

# of 
Cases 

Test Duration 
(s) Illumination Variation 

Temperature 
Variation Purposes 

1 30 No No Initial calibration 

2 30 No Yes 
Robustness of the proposed technique to external heat 

source 
3 

30 No No Performance of displacement estimation using optimized 
temperature range 

4 
5 

6 210 
Yes 

(Extreme) No 
Robustness of the proposed technique to extreme varia-

tions in illumination 

7 120 Yes Yes 
Application selection of transition time for continuous 

displacement estimation 

3.1.1. Initial Calibration Results (Case 1) 
The scale factors for vision and IR measurements were estimated using the algorithm 

proposed in Section 2.1.1, exciting the building model with a 1 Hz sinusoidal signal. A 
bandpass filter was used before estimating the ratio between the acceleration-based dis-
placement and the camera-based translation. The lower and upper cutoff frequencies of 
the bandpass filter were set to 0.3 Hz and 3 Hz, respectively, considering the effective 
frequency range of the accelerometer and the sampling rate of vision and IR cameras [24]. 
Figure 10 shows the estimated scale factors (𝛼௩ and 𝛼ூ ) for the vision and IR cameras, 
which are 0.945 mm/pixel and 1.094 mm/pixel, respectively. 
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Figure 10. Scale factor estimations in the lab-scale test: (a) vision camera and (b) IR camera. 

Next, the temperature range was optimized for the IR measurements. Figure 11a 
shows the FOV of the IR camera and cropped ROI. The maximum and minimum temper-
atures were 33.52 °C and 15.94 °C, respectively, for the FOV due to the existence of two 
cups of water, while they were 28.08 °C and 23.65 °C, respectively, for the ROI. The dif-
ferences between the maximum and minimum temperatures of FOV and ROI were 
equally divided into nine parts, and the values of 𝑙  and ℎ  were set to 0.857  °C  and 
0.604 °C, respectively, as shown in a in Figure 11a. Potential temperature ranges were gen-
erated for different combinations of 𝑙 and ℎ, and the corresponding RMSEs were calcu-
lated, as shown in Figure 11b. Finally, the temperature range [16.79 °C, 28.08 °C] corre-
sponding to the smallest RMSE was selected as the optimized temperature range. 

 
Figure 11. Temperature range optimization results: (a) temperature ranges of the ROI and field of 
view (FOV) and (b) RMSE under different temperature ranges. 
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3.1.2. Displacement Estimation Results 
(a) IR-based displacement estimation using optimized temperature range (Cases 2–5) 

The superiority of using the optimized temperature range was first verified when the 
building model was subjected to a 1 Hz sinusoidal signal excitation (Case 2). Note that the 
researcher’s finger appeared in the ROI at 23.5 s and disappeared from the ROI at 27 s to 
simulate an external heat source that may appear in the ROI in practice. Figure 12a com-
pares the displacements estimated using the FOV and ROI temperature ranges, and the 
temperature range optimized by the proposed algorithm. The best displacement estima-
tion performance was obtained using the optimized temperature range, indicating that 
the performance of IR-based displacement is sensitive to the temperature range. Note that 
when using the FOV temperature range, displacement cannot be continuously estimated 
and then its RMSE cannot be calculated. Figure 12b compares the number of matched 
feature points using the FOV, ROI, and optimized temperature ranges. Using the FOV 
temperature range generated many more matched feature points than using the ROI tem-
perature range; however, the number of matched feature points decreased in both cases 
with the appearance of a finger (e.g., from 26 to 27 s). Therefore, during this period, the 
displacement was estimated with extremely large errors using the FOV temperature 
range, whereas the displacement could not be estimated using the ROI temperature range. 
However, the external heat source had less of an effect on the number of matched feature 
points when using the optimized temperature range, and sufficient feature points were 
stably matched to ensure a reliable displacement estimation. 

 
Figure 12. Comparison of (a) IR-based displacements and (b) number of matched feature points 
with an external heat source suddenly appearing in the ROI (Case 2). 

Figure 13a compares the ROI images and corresponding matching results at the 340th 
frame without an external heat source (i.e., the finger). Only one feature point was 
matched when the FOV temperature range was used, because of the relatively small tem-
perature variations within the ROI. Although a relatively large number of feature points 
(27) matched when the ROI temperature range was used, many were mismatched. There-
fore, the displacement estimation accuracy was low in both cases. Figure 13b compares 
the ROI images and corresponding matching results at the 768th frame with the external 
heat source (i.e., the finger). No feature point was matched when the FOV temperature 
range was used, which caused failure in the continuous displacement estimation. The ex-
ternal heat source significantly reduced the number of matched feature points, and de-
creased the displacement estimation accuracy when using the ROI temperature range. 
However, the external heat source had less effect on the number of matched feature points 
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when using the optimized temperature range, and four sufficient feature points were sta-
bly matched in both the 340th and 768th frames. 

 
Figure 13. ROI, gray, and feature-matching images: (a) with and (b) without the external heat source 
(i.e., the finger). 

The superiority of using the optimized temperature range was further validated un-
der three additional excitation signals, that is, a 2 Hz sinusoidal signal, 0–3 Hz sweep sig-
nal, and a recorded real bridge vibration signal. The displacements estimated using the 
different temperature ranges are compared in Figure 14. Using the optimized temperature 
range reduced the average RMSEs by 72.57% compared to using the ROI temperature 
range, and displacements were estimated accurately with RMSEs below 0.8 mm. Note that 
displacements were not continuously estimated using the FOV temperature range. There-
fore, the RMSEs could not be calculated. 
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Figure 14. IR-based displacements estimated using FOV, ROI, and optimized temperature ranges 
under (a) 2 Hz sinusoidal (Case 3), (b) 0~3 Hz sweep (Case 4), and (c) recorded real bridge vibration 
signal (Case 5) inputs. 

(b) Vision-based displacement estimation using adaptive reference frame updating 
(Case 6) 
The superiority of the adaptive reference frame updating was verified under varying 

illumination conditions when the building model was simultaneously subjected to a 1 Hz 
sinusoidal signal and pseudo-static signal excitation (Case 6). A flashlight approximately 
40 cm from the target of the vision camera was used as the light source and was moved, 
as shown in Figure 15, to simulate varying illumination conditions. 

 
Figure 15. Simulation of varying illumination conditions for Case 6 of the lab-scale test using a mov-
ing light source (i.e., flashlight). 

Figure 16a compares the captured target images at different times, and illumination 
variation is clearly observed. Figure 16b,c compare the number of matched feature points 
and estimated displacements using the existing and proposed techniques. The existing 
technique fixes the reference frame to the first frame, and enough feature points are 
matched in the first 30 s without illumination variations. Subsequently, the movement of 
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the light source causes illumination variations in the ROIs. Therefore, the number of 
matched feature points decreased significantly until it reached zero at 80 s (Figure 16b), 
and the displacements were only estimated at 80 s (Figure 16c). However, the proposed 
technique adaptively updated the reference frame, and matched sufficient feature points 
under the dramatical illumination variation to continuously estimate displacement for 210 
s with 0.89 mm RMSE (Figure 16b,c). However, the reference frame was updated 28 times 
using the proposed technique (Figure 16d), where dramatically varying illumination con-
ditions were considered and the reference frame was updated frequently. However, con-
sidering slowly varying illumination under field conditions, less frequent frame updates 
are required. 

 
Figure 16. Estimation results Case 6 of the lab-scale test: (a) vision ROIs at different time steps, (b) 
vision-based displacements estimated with and without the proposed adaptive reference frame up-
dating algorithm, (c) number of matched feature points with and without the proposed adaptive 
reference frame updating algorithm, and (d) time steps when updating the reference frame. 

(c) Continuous displacement estimation (Case 7). 
The proposed technique was validated by considering both illumination and temper-

ature variations when the building model was subjected to a real bridge vibration signal 
excitation (Case 7). As shown in Figure 17a, to simulate the 24 h illumination variation in 
practice, the light source (i.e., the flashlight), approximately 2 m away from the target of 
the vision, slowly moved from the left side to the right side and then turned off at 60 s. 
Subsequently, it was moved to its original location and turned on for 100 s. Here, [0, 38 s], 
[38 s, 52 s], [52 s, 92 s], [92 s, 108 s], and [108 s, 120 s] simulate the day, the transition time 
from day to night, the night, the transition time from night to day, and during the day, 
respectively. When the light source was turned off, the air conditioner was turned on to 
simulate low-temperature conditions at night (Figure 17b). 
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Figure 17. Simulation of (a) varying illumination and (b) varying temperature conditions in 24 h 
continuous displacement using the light source and air conditioner, respectively. 

As shown in Figure 18a, in the first 38 s, the illumination was relatively stable, and 
sufficient (more than 30) feature points were matched from the vision measurement. 
Therefore, the proposed technique estimates the displacement using vision and accelera-
tion measurements. Subsequently, the illumination dramatically decreased, causing a de-
crease in the number of matched feature points in the vision measurement (Figure 18d). 
IR measurements were also obtained from the beginning of the transition from day to 
night (i.e., 41 s). Because the IR measurements were not sensitive to illumination varia-
tions, the number of matched feature points in the IR measurements was constant. When 
more feature points were matched from IR measurements rather than vision measure-
ments (i.e., 45 s), the proposed technique switched to using IR and acceleration measure-
ments to estimate displacement. At 82 s, the temperature variation induced by the air con-
ditioner caused the ROI image of the IR measurement to be significantly different from 
that of the reference IR frame (i.e., the first IR frame), even when the optimized tempera-
ture range was used (Figure 18b). Therefore, the matched feature points were insufficient 
for displacement estimation, and the reference IR frame was updated to increase the num-
ber of matched feature points (Figure 18d). Vision measurements were obtained again 
from the beginning of the transition from night to day (92 s). When more feature points 
were matched from vision measurements than IR measurements (i.e., 100 s), the proposed 
technique switched back to using vision and acceleration measurements to estimate dis-
placement. Through automated switching between the vision and IR cameras, the pro-
posed technique continuously estimated the displacement with 0.41 mm RMSE (Figure 
18c). However, displacements could only be estimated for the first 42 s using a vision cam-
era and accelerometer. 
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Figure 18. Estimation results for Case 9 of the lab-scale test: (a) vision ROIs at different time steps, 
(b) IR ROIs at different time steps using the optimized temperature range, (c) estimated displace-
ments, and (d) the number of matched feature points. 

3.2. Field Test 
3.2.1. Experimental Setup 

Figure 19 presents an overview of the field test on a pedestrian bridge. The bridge 
shown in Figure 19a is located in Daejeon, Korea, and has a length of 45 m and width of 8 
m. An IR camera and uniaxial force balance accelerometer identical to those used in the 
lab-scale test were installed at approximately 1/4 of the span length of the bridge, as shown 
in Figure 19b. The main purpose of this test was to verify the applicability of the IR camera 
for displacement estimation under field conditions. A Polytec RSV-150 LDV was installed 
at a stationary location under the bridge to measure the reference displacement. Figure 
19c shows the first frame of IR measurement. The pedestrian bridge was excited by four 
people jumping near the measurement point. Note that long-term measurement is re-
quired to consider temperature and illumination variation, but this is not possible owing 
to safety reasons. Therefore, the bridge displacements were estimated for a few minutes 
with stable illumination and temperature to verify the applicability of the IR camera for 
displacement estimation under field conditions. 
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Figure 19. Overview of field test: (a) pedestrian steel box girder bridge, (b) sensor setup on bridge, 
and (c) view from the IR camera. 

3.2.2. IR-Displacement Estimation Results 
For the IR camera, a scale factor was estimated as 3.827 mm/pixel and the tempera-

ture range was optimized as [−10.2 °C, 6.4 °C]. The displacements estimated using the 
ROI, FOV, and optimized temperature ranges are compared in Figure 20a. The optimized 
temperature range exhibited the best displacement estimation performance with an RMSE 
of only 0.189 mm. Figure 20a shows a comparison of the number of matched feature 
points. Although the ROI temperature range had the most matched feature points, many 
of these feature points were mismatched and the displacement estimation accuracy was 
worse than that obtained using the optimized temperature range. Only a few feature 
points were matched when using the FOV temperature range, and a matching failure oc-
curred when using an external heat source (e.g., bus exhaust). Therefore, the displacement 
could not be continuously estimated. However, the use of the optimized temperature en-
sured sufficient correctly matched feature points with and without a heat source (Figure 
20b,c). 
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Figure 20. IR-based displacement estimation results: (a) IR-based displacement and matching re-
sults, (b) 1296th IR image (based on FOV temperature) before temperature optimization, and (c) 
after temperature optimization. 

4. Conclusions 
This study proposes a continuous structural displacement estimation technique us-

ing a collocated accelerometer, vision, and IR cameras. The proposed technique first esti-
mates two scale factors for converting translation in a pixel unit to displacement in a 
length unit for the vision and IR cameras and then optimizes the temperature range for 
the IR camera. Subsequently, the displacement was continuously estimated by adaptively 
updating the reference frame and automated switching between the vision and IR cam-
eras during the day and night. The main contributions of this study are (1) day and night 
continuous displacement estimation using an accelerometer, IR, and vision cameras; (2) 
automated temperature range optimization for the IR camera; and (3) adaptive reference 
frame updating for improved robustness against illumination and temperature variations. 
The proposed technique was validated through a laboratory-scale test that considered il-
lumination and temperature variations, and the displacements were estimated using 
RMSEs below 1 mm. The applicability of the IR camera for displacement estimation under 
field conditions was validated using a pedestrian bridge test. The proposed reference 
frame updating improves the robustness against illumination and temperature variations 
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but also causes error accumulation until the reference frame is updated back to the first 
frame. Further studies are required to address this issue. In addition, the proposed tech-
nique was validated only for a short time period, and further validation of its long-term 
performance under field conditions with illumination and temperature variations is re-
quired. 
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