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A B S T R A C T   

This paper proposes an FIR filter-based two-stage fusion technique for high-sampled (HS) 
structural displacement estimation using HS acceleration and temporally aliased low-sampled 
(TLS) displacement measurements. First, the temporally aliased error in the TLS displacement 
measurement is estimated using the acceleration measurement and then eliminated to obtain an 
anti-aliased low-sampled (ALS) displacement. Next, a low-frequency displacement is estimated 
from the ALS displacement, and a high-frequency displacement is estimated from the HS accel
eration measurement. Finally, the HS displacement is estimated by combining the estimated low- 
and high-frequency displacements. The proposed technique is also applied to estimate the HS 
structural displacement by fusing a vision camera and an accelerometer. An automated algorithm 
is proposed to estimate a scale factor for converting a translation in a pixel unit to a displacement 
in a length unit and to align measurements of two sensors using short-period HS acceleration and 
TLS vision measurements. The performance of the proposed technique was numerically and 
experimentally validated. A significant improvement in the displacement estimation accuracy 
was achieved compared to existing FIR filter-based techniques owing to the explicit elimination of 
the temporally aliased error.   

1. Introduction 

In civil engineering, structural failures can lead to catastrophic results, and structural health must be continuously monitored to 
prevent such failures. Structural health monitoring aims to monitor, analyze, and identify various types of loads and structural re
sponses of a target structure during its service life. This enables the assessment of the structural performance and safety status. The 
displacement response plays a vital role in structural health monitoring because it helps to understand the global behavior of structures 
and evaluate structural safety and can be used in structural control and disaster prevention and mitigation. 

Several structural displacement sensing techniques using accelerometers [1,2], real-time kinematic global navigation satellite 
systems (RTK-GNSS) [3], strain sensors [4,5], radar systems [6,7], and vision cameras [8–11] have been proposed. However, each of 
these sensors has advantages and disadvantages. For example, displacement can be easily calculated by the double integration of 
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accelerometer measurements; but, a low-frequency drift appears in the acceleration-based displacement. Displacement can also be 
estimated using vision cameras; however, vision-based displacement suffers from limited accuracy and sampling rate. Another trend 
for structural displacement estimation is to fuse multiple types of sensors for improved displacement estimation, which includes the 
fusion of the accelerometer with other sensors such as RTK-GNSS [12,13], strain sensors [14], vision cameras [15–18], radar systems 
[19], and inclinometers [20]. Notably, the fusion of accelerometer with other sensors can improve accuracy and increase sampling rate 
of the estimated displacement. 

The fusion of accelerometer with other sensors has been extensively studied by using either finite impulse response (FIR) filters or 
Kalman filters. Kalman filters are advantageous for real-time displacement estimation without any time delay. However, they are 
essentially infinite impulse response (IIR) filters and therefore have the limitations of IIR filters, such as nonlinear phase [21], which 
introduces additional errors in the estimated displacement. Although FIR filters have a linear phase, it introduces a little time delay in 
the displacement estimation. In addition, the cutoff frequency required for FIR filters can be determined more easily than the noise 
variation required for Kalman filters. If real-time estimation capability is important in certain applications (e.g., structural control), 
then Kalman filters should be chosen. However, in the authors’ experience, FIR filters outperform Kalman filters in terms of 
displacement estimation accuracy, and if a short time delay for displacement estimation is acceptable, then FIR filters should be 
selected for data fusion. 

FIR filters have been used to fuse the acceleration and displacement measurements [14,15,18,20,22]. Fig. 1 presents an overall 
flowchart of the existing FIR filter-based structural displacement estimation technique that uses high-sampled (HS) acceleration and 
low-sampled (LS) displacement measurements. The HS displacement is first estimated from the HS acceleration measurement using 
double integration with a large low-frequency drift. The drifted HS displacement is then high-pass filtered to extract the HS high- 
frequency displacement. Meanwhile, an LS low-frequency displacement is first extracted from the LS displacement measurement 
using a low-pass filter and then upsampled to match the sampling rate of the acceleration measurement to obtain an HS low-frequency 
displacement. The final HS displacement is estimated by combining the HS low- and high-frequency displacements. Note that the low- 
and high-pass filters employed here are complementary, and the cut-off frequency (fc) of the filters is determined as the first natural 
frequency of a target structure [14,22,23] or based on the noise characteristics of acceleration and displacement measurements 
[15,18,20]. 

However, temporal aliasing may occur in the LS displacement measurement with the existence of displacement above its Nyquist 
frequency (fN), that is, half of its sampling rate (FL). Because the LS displacement measurement only contributes to the low-frequency 
(<fc) components of the final estimated displacement, an aliased error above fc in the LS displacement measurement has no effect on 
the final estimated displacement; however, an aliased error below fc is retained in the final estimated displacement, thereby causing 
inaccurate displacement estimation. The aliasing issues can be addressed by applying an anti-aliasing filter before original analog 
signals are converted to digital converter, which eliminates displacement components with frequencies above fN. However, this 
method is only applicable when LS displacement measurements are originally recorded in an analog format. For displacement mea
surements obtained from radar, RTK-GNSS, or vision cameras, it’s not possible to use an anti-aliasing filter. Some techniques have 
attempted to address the temporal aliasing issue when using non-uniform [24] or uniform [25] low-sampling vision measurements, but 
they only focus on structural modal identification. 

In this study, an FIR filter-based two-stage fusion technique is proposed to estimate HS displacement using HS acceleration and 
temporally aliased LS (TLS) displacement measurements. First, the temporally aliased error in the TLS displacement measurement is 
estimated from the acceleration measurement and then eliminated from the TLS displacement measurements to obtain an anti-aliased 
LS (ALS) displacement. Next, an HS low-frequency displacement is estimated from the ALS displacement, and the HS high-frequency 
displacement is estimated from the acceleration measurement. Finally, the HS displacement is estimated by combining the estimated 
HS low-frequency and high-frequency displacements. The proposed FIR filter-based two-stage fusion technique is applied to estimate 
the HS structural displacement using a vision camera and an accelerometer. Using short-period HS acceleration and TLS vision 
measurements, an initial calibration algorithm is proposed to achieve (1) the automated estimation of a scale factor for unit conversion 

Fig. 1. Existing FIR filter-based fusion of high-sampled (HS) acceleration and low-sampled (LS) displacement measurements for structural 
displacement estimation. 
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and (2) the precise alignment of vision and acceleration measurements. This study offers the following contributions: (1) an FIR filter- 
based two-stage fusion technique is proposed for HS structural displacement estimation using HS acceleration and TLS displacement 
measurements; (2) by explicitly eliminating the temporally aliased error in the TLS displacement measurement, the displacement 
estimation accuracy is significantly improved compared to existing FIR filter-based techniques; (3) the proposed FIR filter-based two- 
stage fusion technique is applied to vision cameras and accelerometers, and HS structural displacement is estimated using HS ac
celeration and TLS vision measurements; and (4) precise alignment of vision and acceleration measurements and estimation of scale 
factor are automatically achieved using short-period HS acceleration and TLS vision measurements. Note that the authors previously 
explored the fusion of strain gauges and accelerometer [26] and the fusion of millimeter-wave radar and accelerometer [19], but both 
strain and radar measurements were obtained at the same high sampling rate as acceleration measurements. Therefore, an existing FIR 
filter [22] was directly adopted without any temporal aliasing issue. 

The remainder of this paper is organized as follows. The proposed FIR filter-based two-stage fusion technique is described in Section 
2, and its application to fuse vision cameras and accelerometers is described in Section 3. The performance of the proposed technique is 
first examined using numerical simulation of a simply supported beam model, as illustrated in Section 4, followed by experimental 
validation, as illustrated in Section 5. The concluding remarks are presented in Section 6. 

2. Development of an FIR filter-based two-stage fusion technique for HS displacement estimation using HS acceleration 
and TLS displacement measurements 

2.1. Review of temporal aliasing phenomena 

According to the Nyquist-Shannon sampling theorem [27], the temporal aliasing phenomena may occur in the LS displacement 
measurement with the existence of displacement above its Nyquist frequency (fN), that is, half of its sampling rate (FL). To intuitively 
understand the aliasing phenomena, the “fanfold paper” method [28] is commonly used. As shown in Fig. 2, the frequency spectrum of 
actual displacement is plotted on a small stack of semitransparent fan-fold paper with folds in the vertical direction. The frequency axis 
from left to right has inward creases at multiples of fN, and the outward creases at odd multiples of fN. When sampling the actual 
displacement with a sampling frequency of FL (i.e., downsampling from infinite to FL), the stack of fanfold paper simply collapses, and 
the components above fN are “folded” down into the frequency band of [0 Hz, fN], which represents the exact frequency spectrum of the 
LS displacement measurement. All frequency components from the high-frequency region (>fN) are called aliasing errors. 

2.2. Working principle of the proposed FIR filter-based two-stage fusion technique 

In this section, an FIR filter-based two-stage fusion technique is proposed for HS structural displacement using HS acceleration and 
TLS displacement measurements. A temporally aliased error in the TLS displacement measurement is first estimated using acceleration 
measurement and then eliminated from the TLS displacement measurement to estimate the ALS displacement. Finally, the low- 
frequency component of the estimated ALS displacement and high-frequency component of the acceleration-based displacement 
are combined to estimate the HS displacement. The proposed technique, as shown in Fig. 3 includes the following two stages. 

Stage I—TLS displacement anti-aliasing: First, an HS drifted displacement is estimated from the HS acceleration measurement 
sampled at FH via double integration, and a high-pass filter (PH) with a cut-off frequency of fN is applied to the HS drifted displacement 
to extract the HS displacement with a frequency above fN (hereafter denoted as HS above-fN displacement). Here, fN denotes the 
Nyquist frequency of the TLS displacement measurement, that is, half of the sampling rate (fN = FL/2). Because PH is used for anti- 
aliasing, it is hereafter referred to as an anti-aliasing filter. Next, the HS above-fN displacement is downsampled to the sampling 
rate of the TLS displacement measurement (FL), and then an LS temporally aliased error is estimated. Finally, the estimated LS 
temporally aliased error is eliminated from the TLS displacement measurement to obtain an ALS displacement sampled at FL. 

Stage II—HS displacement estimation: First, a pair of complementary filters, including high- and low-pass filters (QH and QL, 
respectively), are applied to the HS drifted displacement and estimated ALS displacement to extract the HS high- and low-frequency 
displacements, respectively. Note that the estimated ALS displacement is upsampled to FH before filtering. The details regarding the 
cut-off frequency (fc) of the complementary filters are explained in Section 2.2. The HS displacement is finally estimated by combining 
the extracted HS low- and high-frequency displacements. 

Fig. 2. A straightforward illustration of temporal aliasing phenomena using a “fanfold paper” method.  
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In the proposed technique, the temporal aliasing error in TLS displacement measurement is estimated as the downsampled 
acceleration-based displacement after removing the displacement component with frequency below fN. This is further justified in Fig. 4 
using the “fanfold paper” method. The downsampling process collapses the stack of fanfold paper and components above fN are 
“folded” down into the frequency band of [0 Hz, fN], which represents the frequency spectrum of aliasing errors in the TLS 
displacement measurement. It should be noted that the sampling frequency of acceleration measurement (FH) are assumed to be 
sufficiently high so that no temporal aliasing exists in the acceleration measurement.” 

2.3. FIR filter design and parameter determination 

The proposed FIR filter-based two-stage fusion technique is described in Section 2.2, and consists of an anti-aliasing filter (PH) and a 
pair of complementary filters (QL and QH). An example of the frequency transfer functions of PH, QL, and QH is shown in Fig. 5. Note 
that, here, the ripples in both the pass and stop bands are ignored to focus on the transition bands. 

PH is used to extract displacement components with the frequency above fN from HS drifted displacement estimated from accel
eration measurement, and therefore, the cut-off frequency of PH need to be set to fN in ideal conditions as shown in Fig. 6(a). However, 
an actual filter has a transition band with the ripples in both the pass and stop bands (Fig. 6(b)), and one more parameter, i.e., the 
transition bandwidth, needs to be determined. Assuming that the cut-off frequency of QL and QH is set to fc, the ALS displacement 
contributes only to the low-frequency (<fc) component of the final estimated displacement, and therefore it must include correct 
information up to fc. Then, PH should be able to completely remove displacement with the frequency below fc, and its bandwidth needs 
to be smaller than or equal to (fN − fc). This statement is further justified in Fig. 7. When the transition bandwidth of PH is larger than 
(fN − fc), the ALS displacement has distorted displacement in the frequency band below fc, which will cause inaccurate final 
displacement estimation. Note that the distortion in the frequency band above fc does not affect the final estimated HS displacement 
because the ALS displacement is further filtered by QL to retain only the low-frequency (< fc) displacement component. Considering 
that a sharp transition band leads to a large order of the filter (i.e., a long time delay and phase distortion) and serious fluctuations (i.e., 
large ripples) in both the pass and stop bands owing to the Gibbs phenomenon [29] (Fig. 6(b)), the transition bandwidth of PH should 
be maximized to minimize these fluctuations and time delays. Therefore, its transition bandwidth is set to (fN − fc). The minimum 
bandwidth is suggested to be 0.5 Hz in this study and then fN should be at least larger than (fc + 0.5 Hz), indicating that the smallest 
sampling rate required for the TLS displacement measurement is, 

Fig. 3. Proposed two-stage FIR filter-based fusion of HS acceleration and TLS displacement measurements for HS structural displace
ment estimation. 

Fig. 4. A straightforward illustration of the estimation of temporal aliasing error from acceleration-based displacement using a “fanfold 
paper” method. 
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Fig. 5. Example of FIR complementary filters (QL and QH) and anti-aliasing filter (PH).  

Fig. 6. Comparison between (a) ideal and (b) actual filters.  

Fig. 7. Distortion issue of ALS displacement when using a PH with transition bandwidth larger than 
(
fN − fc

)
.

Fig. 8. Example of noise power spectral densities (PSD) of (a) acceleration-based displacement and displacement measurement and (b) the 
correspondingly estimated displacement. 
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Fmin,l = 2
(
fc+ 0.5) (1) 

The cut-off frequency (fc) and transition band (Δfc) of QL and QH should be determined based on the noise characteristics of the 
acceleration and displacement measurements. Fig. 8(a) shows the typical noise power spectral densities (PSD) of acceleration-based 
displacement and displacement measurements. The displacement measurement has a uniform noise level, whereas the acceleration- 
based displacement is estimated from the double integration of acceleration measurement and has a decreasing noise distribution as 
the frequency increases. Normally, there is a crossover point between noise spectra. To minimize the noise in the estimated HS 
displacement (Fig. 8(b)), the transition band need to include the crossover point and the value of (fc − Δfc) should be sufficiently large 
to completely remove the low-frequency drift of the acceleration-based displacement. The value of (fc − Δfc) relies on the low- 
frequency performance of an accelerometer and it varies depending on different types of accelerometers. However, a series of labo
ratory tests have been conducted by the authors using force-balance type and high-cost and low-cost MEMS type accelerometers, and it 
is concluded that a value of 0.5 Hz is universally good for these accelerometers. The value of Δfc should be sufficiently small to include 
more high-frequency components of the acceleration-based displacement in the estimated HS displacement, thereby achieving a better 
displacement estimation accuracy. However, a sharp transition band leads to a large order of the filter (i.e., a long time delay and phase 
distortion) and serious fluctuations in both the pass and stop bands owing to the Gibbs phenomenon [29], and therefore the transition 
bandwidth (Δfc) is suggested to be 0.5 Hz. Note that because the transition bands of the filters used in existing studies [15,22,23,30] 
cannot be explicitly controlled, this study designed PH and QL and QH as Equiripple-type FIR filters using the MATLAB Filter Designer 
Toolbox [31] with determined cut-off frequency and transition bandwidths. 

Fig. 9 presents a spectral interpretation of the proposed two-stage FIR filter-based fusion technique considering the transition bands 
of the filters. The displacement in the frequency band of [fc,fN] is not completely removed by PH owing to its transition band (Fig. 9(c)) 
and is partially retained in the estimated LS error (Fig. 9(d)). Therefore, the ALS displacement in the frequency band of [fc, fN] is 
distorted after Stage I-4, as shown in Fig. 9(f). However, it has no effect on the final estimated HS displacement because QL retains only 
the low-frequency (<fc) displacement of the ALS displacement (Fig. 9(h)). Owing to the presence of the transition band of the com
plementary filters, the acceleration measurement completely contributes to the portion of the estimated HS displacement with fre
quencies higher than fc, whereas the displacement measurement completely contributes to the portion of the estimated HS 
displacement with frequencies lower than fc − Δfc. Between fc − Δfc and fc, both acceleration and displacement measurements 
contribute to the estimated HS displacements (Fig. 9(i)). 

Fig. 9. Spectral interpretation of the proposed two-stage FIR filter-based fusion technique considering the transition bands of filters.  
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3. Application of the proposed technique to fuse an accelerometer and a vision camera for HS displacement estimation 

The two-stage FIR-filter fusion technique proposed in Section 2 was applied to fuse a vision camera and an accelerometer, and the 
overall scheme of displacement estimation is shown in Fig. 10. A vision camera installed on a structure tracks a nearby fixed target with 
a low sampling rate (Fs,v), and an accelerometer is placed at the same location as that of the vision camera to measure the acceleration 
of the structure with a high sampling rate (Fs,a). Assuming that the structure has a displacement with a frequency above Fs,v/2, a TLS 
displacement is first estimated from vision measurement and then is fused with HS acceleration measurement using the proposed FIR 
filter-based two-stage fusion technique to obtain an HS displacement. Among several available computer vision algorithms [32–34] for 
vision-based displacement estimation, a template-matching algorithm based on zero-mean normalized cross-correlation (ZNCC) [34] 
was adopted in this study. A rectangular subset image of size M × N pixels, i.e., Template T, was first selected from the first frame by 
including a target. Then, a ZNCC matrix can be constructed between the template and the rectangular subset images from the current 
frame I at location (x, y) with the size of M × N pixels (Ic(x, y)), 

ZNCC(x, y) =
∑N

j=1
∑M

i=1{I(x + i, y + j) − μ(Ic(x, y)) }{T(i, j) − μ(T)}
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1

∑M

i=1
{I(x + i, y + j) − μ(Ic(x, y)) }2

√
∑N

j=1
∑M

i=1{T(i, j) − μ(T)}2

(2)  

where μ(Ic(x, y)) and μ(T) denote the mean values of Ic(x, y) and T, respectively. The target location at the current frame I can be 
estimated by finding the maximum value of the ZNCC matrix, but it only has pixel-level resolution. Therefore, the ZNCC matrix is 
spline interpolated to achieve subpixel resolution in target location estimation. The variation of target location becomes structural 
translation in pixel units, which is further converted to structural displacement in length units using a pre-estimated scale factor. 

However, two issues should be addressed in advance: (1) accelerometer and vision camera measurements may not be perfectly 
aligned, and (2) the estimation of the scale factor requires manual measurement of the target physical size, which may not be easy in 
practice. Fig. 11 presents an automated initial calibration algorithm for the measurement alignment and scale factor estimation using 
short-period (less than 1 min) HS acceleration and TLS vision measurements, and it consists of four steps: 

Step 1: A TLS translation is first estimated from the vision measurement using the template-matching algorithm, and a band-pass 
filter is then applied to the estimated TLS translation to obtain a filtered translation. Notably, the filtered translation includes a 
temporally aliased error (Fig. 11(a)). 

Step 2: An HS displacement is estimated from the acceleration measurement by double integration and then downsampled to Fs,v to 
obtain a TLS displacement. Subsequently, a bandpass filter is applied to the acceleration-based TLS displacement to obtain a filtered 
displacement. Notably, the filtered displacement includes a temporally aliased error (Fig. 11(b)). 

Step 3: The cross-correlation function between the filtered displacement and translation is calculated using the MATLAB built-in 
function xcorr [35], and the time lag between the vision and acceleration measurements is estimated. However, the initial time lag 
is only discrete, with an interval of 1/Fs,v, which may be insufficient. Thus, spline interpolation was applied to the cross-correlation 
function to estimate a more precise time lag (Fig. 11(c)). 

Step 4: The filtered translation and displacement are precisely aligned with the estimated time lag, and the scale factor is estimated 
by applying the least square estimate algorithm to the aligned and filtered translation and displacement (Fig. 11(d)). 

The key parameter associated with the algorithm is the cut-off frequency of the band-pass filter. The lower value should be suf
ficiently large to eliminate the low-frequency drift in the acceleration-based displacement, and its value was set to 0.5 Hz in this study. 
The upper value is suggested to be Fs,v/10. However, it can be set to Fs,v/2, with a rather small Fs,v.

Fig. 10. Overall scheme of fusing a vision camera and an accelerometer for HS structural displacement estimation using the proposed FIR filter- 
based two-stage fusion technique. 
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4. Numerical validation 

4.1. Simulation description 

A simply supported beam with a length of 40 m was simulated in MATLAB to validate the displacement estimation performance of 
the proposed technique (Fig. 12(a)). The beam had a uniform rectangular cross-section with a width of 3 m and height of 1 m. The 
flexural rigidity and mass per unit length of the beam were 6.03 × 1010N/m2 and 1.5 × 103 kg/m, respectively. A concentrated 
excitation force with a duration of 100 s (Fig. 12(b)) was applied to the center of the beam. Note that the excitation force includes a 
pseudo-static component and several sinusoidal (0.7 Hz, 3.1 Hz, 8 Hz, and 10.3 Hz) components. The displacement and acceleration 
responses under the excitation force were simulated at the same location with a sampling rate of 100 Hz using the Newmark-β method 
[36]. 

The simulated displacement was downsampled to 10 Hz, and the downsampled (i.e., TLS) displacement was fused with the ac
celeration sampled at 100 Hz (i.e., HS) for HS displacement estimation. Note that Gaussian noise was added to the acceleration and 
downsampled displacement to simulate measurement noise, and the signal-to-noise ratios (SNRs) were 40. Fig. 13 shows a comparison 
of the frequency spectra of the displacements sampled at 100 Hz and 10 Hz. Two temporally aliased errors (0.3 Hz and 2 Hz) are clearly 
observed in the displacement sampled at 10 Hz. 

4.2. Displacement estimation results 

The transition bands of the complementary filters (QL and QH) and anti-aliasing filter (PH) were set to [0.5 Hz, 1 Hz] and [1 Hz, 5 
Hz], respectively. An existing technique [22] was adopted for performance comparison, and the cut-off frequency was set to 1 Hz with 
an accuracy index of 0.97. Note that though there are more recent studies on the FIR-filter-based displacement estimation [18,37,38], 

Fig. 11. Flowchart of the proposed initial calibration for automated scale factor estimation and measurement alignment: (a) step 1: estimation of a 
band-pass filtered translation in a pixel unit from the vision measurement, (b) step 2: estimation of a band-pass filtered displacement in a length unit 
from the acceleration measurement, (c) step 3: estimation of an alignment error between vision and acceleration measurements, and (d) step 4: 
estimation of a scale factor for unit conversion. 

Fig. 12. (a) Overview of a numerical simply-supported beam and (b) an excitation force signal applied to the center of the beam.  
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they adopted the FIR filter presented in this paper [22] or its variant[30]. Fig. 14 shows a comparison of the displacements estimated 
using the proposed and existing techniques, and they are in good agreement with the reference displacement (i.e., the originally 
simulated displacement). Additionally, the estimated displacements between 75 s and 80 s were zoomed in. A discrepancy was 
observed between the displacement estimated using the existing technique and the reference displacement. The root mean square 
errors (RMSEs) of the estimated displacements were calculated to quantitatively evaluate the performance of the two techniques. The 
RMSEs were reduced by 78 % using the proposed technique compared with the existing technique. 

Fig. 15 depicts the frequency spectra of the estimated and reference displacements to clearly demonstrate the superiority of the 
proposed technique over the existing technique. The frequency spectrum of the displacement estimated using the proposed technique 
was in good agreement with that of the reference displacement. However, the temporally aliased error at 0.3 Hz in the TLS 
displacement was retained in the displacement estimated using the existing technique, causing a large RMSE. Notably, the existing 
technique eliminated the temporally aliased error at 2 Hz because only the low-frequency (<1 Hz) component of the TLS displacement 
was retained in the final estimated displacement. The excitation frequencies identified by the proposed and existing techniques were 
identical to those identified from the reference displacements and the nominated excitation frequencies. Note that, both the estimated 

Fig. 13. Frequency spectra of (a) HS (100 Hz) and (b) downsampled (10 Hz) displacements.  

Fig. 14. Comparison of simply supported beam displacements estimated by the existing and proposed techniques using 10 Hz displacement and 
100 Hz acceleration measurement: (a) estimated displacements and (b) corresponding errors. 
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and reference displacements had the same sampling rate of 100 Hz, so they share the same frequency resolution of 0.01 Hz. 

4.3. Effect of measurement noise and measurement alignment error on displacement estimation performance 

In addition, the effect of measurement noise on displacement estimation performance was investigated. The displacements were 
estimated by the proposed and existing techniques using the acceleration measurement with a fixed SNR of 40 and displacement 
measurement with an SNR varying from 20 to 100. The corresponding RMSEs are shown in Fig. 16(a). For the proposed technique, the 
RMSE was reduced to approximately 45 % when the SNR of the displacement measurement was increased from 20 to 30. Thereafter, 
increasing the SNR did not significantly reduce the RMSE. Because the displacements estimated by the existing technique had large 
RMSEs owing to temporally aliased errors, they were less sensitive to the SNR of the displacement measurement. 

In this simulation, the acceleration and downsampled displacements were exactly aligned, which may not be possible in real-world 
applications. The effect of the measurement alignment error between the acceleration and displacement measurements on the 
displacement estimation performance was further studied, as shown in Fig. 16(b). Different measurement alignment errors were 
introduced and the corresponding displacements were estimated using the proposed and existing techniques. The displacement 
estimation errors of both techniques dramatically increased with increased measurement alignment errors, even less than 0.01 s, thus 
demonstrating the importance of precise measurement alignment. 

5. Experimental validation using a vision camera and an accelerometer 

5.1. Indoor single-story building test 

5.1.1. Experimental setup 
A single-story building model was used to validate the proposed technique, as shown in Fig. 17. An accelerometer (EpiSensor ES- 

U2) and a vision camera (DJI OSMO Action) were installed at the top of the model, and a shaker (ELECTRO-SEIS APS-400) moved the 
model in the horizontal direction. Table 1 lists the detailed specifications of the accelerometer and vision camera. The displacement of 
the model measured by a Polytech PSV-400 laser Doppler vibrometer (LDV) with a resolution of 0.5 pm [39] was used as the ground 
truth. The vision measurement was initially sampled at 30 (≈ 29.97) Hz, whereas both acceleration and LDV measurements were 
sampled at 100 Hz. Fig. 17 shows the field of view (FOV) of the vision camera and the selected region of interest (ROI). The distance 

Fig. 15. Comparison of frequency spectra of simply supported beam displacement estimated by the existing and the proposed techniques using 10 
Hz displacement and 100 Hz acceleration measurement. 

Fig. 16. Effect of (a) SNR of displacement measurement and (b) measurement alignment error on displacement estimation accuracy.  
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between the vision camera and the target, that is, several stones, was approximately 1 m. Five different sinusoidal signals were input 
into the shaker to excite the model in this test: (1) Excitation 1: 0.1 Hz + 2.2 Hz), (2) Excitation 2: 0.1 Hz + 3.3 Hz, (3) Excitation 3: 0.1 
Hz + 5.1 Hz, (4) Excitation 4: 0.1 Hz + 6.3 Hz, and (5) Excitation 5: 0.1 Hz + 10.3 Hz. 

5.1.2. Scale factor and displacement estimation results 
First, an initial calibration was conducted using vision and acceleration measurements under Excitation 1 to estimate the scale 

factor and align the vision and accelerometer measurements. Fig. 18 presents the scale factor estimated using 100 Hz acceleration and 
30 Hz vision measurements. The cut-off frequencies of the bandpass filter were set to [0.5 Hz, 3 Hz]. As there was no temporal aliasing, 
identical results were obtained using the proposed and existing algorithms [16]. 

Fig. 19(a) and (b) present the scale factors estimated by the two algorithms using 100 Hz acceleration and 3 Hz vision measure
ments. The cut-off frequencies of the bandpass filter were set to [0.5 Hz, 1.5 Hz]. The proposed algorithm still estimated the scale factor 

Fig. 17. Overall configuration of an indoor single-story building model test.  

Table 1 
Detailed specifications of the accelerometer and vision camera used in a single-story building model test.  

Sensors Parameters Values 

Accelerometer 
(EpiSensor ES-U2)  

Type Uniaxial force-balance 
Dynamic range 155 dB+
Bandwidth DC − 200 Hz 
Full-scale range ±0.25 g to ± 4 g (User selectable) 
Operating temperature − 20 ~ 70 ◦C 
Hysteresis < 0.1 % of full scale 
Linearity < 1000 μg/g2 
Cross-axis sensitivity < 1 % (including misalignment) 
Zero point thermal drift < 500 μg/◦C 

Vision camera (DJI OSMO Action)  Sensor type 1/2.3″ type CMOS sensor 
Effective pixels 12 megapixels 
Maximum aperture of lens f/2.8 
Angle of view 145◦

Resolution Up to 4 K (3840 × 2160) 
Sampling rate/frame per second up to 60 Hz with 4 K resolution  
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accurately that was almost identical to that estimated using the 100 Hz acceleration and 30 Hz vision measurements. However, the 
existing algorithm did not estimate the scale factor accurately owing to temporal aliasing. Notably, the scale factor estimated by the 
proposed algorithm using 100 Hz acceleration and 3 Hz vision measurements (6.4346 pixels/mm) was used for further displacement 
estimation. 

Subsequently, the HS displacements were estimated under different excitation conditions. The transition band of the comple
mentary FIR filter was set to [0.5 Hz, 1.0 Hz], and therefore, the smallest sampling rate (Fmin,l) required for vision measurement was 3 
Hz. Fig. 20 shows a comparison of the displacements estimated by the proposed and existing techniques using 3 Hz vision and 100 Hz 
acceleration measurements, and Fig. 21 shows a comparison of their frequency spectra. The cut-off frequency was set to 1 Hz with an 
accuracy index of 0.97 for the existing technique [22]. In all five excitation cases, the proposed technique accurately estimated 
displacement with RMSEs less than 0.3 mm by explicitly eliminating temporally aliased errors in the vision-based displacement. The 
existing technique accurately estimated displacement under Excitation 5 because the aliased error in the vision-based displacement 
occurred at 1.3 Hz (>1 Hz), and then the error could be completely eliminated by the low-pass filter (Fig. 20(e) and Fig. 21(e)). For 
Excitations 1 and 3, aliased errors in vision-based displacements appeared at 0.8 Hz and 0.9 Hz, respectively, and fell into the transition 
band of the low-pass FIR filter, and then the errors were partially reduced, but not completely eliminated (Fig. 21(a) and (c)). 
Therefore, displacements were estimated using the existing technique with relatively larger RMSEs compared with that of the proposed 
technique (Fig. 20(a) and (c)). Because the frequencies of the aliased errors in vision-based displacements under Excitations 2 and 4 
were smaller than 0.5 Hz, the aliased errors were completely retained in the final estimated HS displacements even after fusing with 
acceleration. Thus, large errors of approximately 2 mm were observed in the displacements estimated using the existing technique 
(Fig. 21(b) and (d)). In all five cases, the excitation frequencies identified by the proposed and existing techniques were identical to 
those identified from the reference displacements. However, the identified excitation frequencies were slightly different from the 
nominated excitation frequencies with a maximum error of 0.0074 Hz. Note that 54 s data with a sampling rate of 100 Hz were used 
here and then the frequency resolution is 0.0185 Hz for both the estimated and reference displacements. 

Table 2 lists the RMSEs of displacements estimated by the proposed technique and the Kalman filter-based technique developed 
earlier by the authors [16]. The proposed technique outperformed the Kalman filter-based technique in all five cases at the cost of a 
time delay (2.5 s). Note that the Kalman filter-based technique did not include any smoothing algorithms, and thus estimated 
displacement in real-time. 

5.1.3. Effect of the sampling rate of the vision measurement on displacement estimation performance 
Additionally, the effect of the sampling rate of the vision measurement on displacement estimation performance was investigated 

Fig. 18. Scale factors estimated using 100 Hz acceleration measurement and 30 Hz (not aliased) vision measurements (Excitation 1: 0.1 Hz +
2.2 Hz). 

Fig. 19. Scale factors estimated using 100 Hz acceleration measurement and 3 Hz (aliased) vision measurements by (a) existing [16] and (b) 
proposed algorithms (Excitation 1: 0.1 Hz + 2.2 Hz). 
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by fusing a 100 Hz acceleration measurement with the vision-based displacement with a sampling rate varying from 30 Hz to 3 Hz. 
Table 3 summarizes the frequencies of the aliased errors in vision-based displacement with different sampling rates, and they were 
categorized into three types: (1) no temporal aliasing, (2) temporally aliased error in the low-frequency band (<1 Hz), and (3) 
temporally aliased error in the high-frequency band (≥ 1 Hz). 

The RMSEs of the displacements estimated using the existing FIR based technique [22], the existing Kalman filter based technique 

Fig. 20. Comparison of single-story building displacements estimated by the existing [22] and proposed techniques using 100 Hz acceleration and 
3 Hz vision measurements: (a) Excitation 1: 0.1 Hz + 2.2 Hz, (b) Excitation 2: 0.1 Hz + 3.3 Hz, (c) Excitation 3: 0.1 Hz + 5.1 Hz, (d) Excitation 4: 
0.1 Hz + 6.3 Hz, and (e) Excitation 5: 0.1 Hz + 10.3 Hz. 

Fig. 21. Comparison of frequency spectra of single-story building displacements estimated by the existing [22] and the proposed techniques using 
100 Hz acceleration and 3 Hz vision measurements: (a) Excitation 1: 0.1 Hz + 2.2 Hz, (b) Excitation 2: 0.1 Hz + 3.3 Hz, (c) Excitation 3: 0.1 Hz +
5.1 Hz, (d) Excitation 4: 0.1 Hz + 6.3 Hz, and (e) Excitation 5: 0.1 Hz + 10.3 Hz. 
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[16], and the proposed techniques are compared in Fig. 22. The existing FIR filter-based technique performs better than the Kalman 
filter-based technique if no temporal aliasing occurs, but worse if temporal aliasing occurs. However, the proposed technique always 
performs better than both techniques with less than 0.3 mm errors. In addition, the displacement estimation accuracy of the proposed 
technique was not very sensitive to the sampling rate of vision-based displacement and a TLS vision measurement could be used to 
reduce the computational costs and power assumption. This is important for developing a wireless visual-inertial sensor platform for 
continuous displacement monitoring. 

Table 2 
RMSEs of displacement estimated by the Kalman filter-based technique previously developed by the authors [16] and the 
proposed technique (Unit: mm).  

# of excitations Kalman filter-based technique [16] Proposed technique 

1  0.819  0.161 
2  0.851  0.187 
3  0.821  0.175 
4  0.946  0.216 
5  0.782  0.197  

Table 3 
Frequency of the aliased errors in LS vision-based displacements of the single-story building model.  

Vision sampling rate Fs,v (Hz) Excitation signals  

0.1 Hz + 2.2 Hz 0.1 Hz +3.3 Hz 0.1 Hz + 5.1 Hz 0.1 Hz + 6.3 Hz 0.1 Hz + 10.3 Hz 
30   No temporal aliasing   
15     4.7 Hz 
10   4.9 Hz 4.7 Hz 0.3 Hz 
6  2.7 Hz 0.9 Hz 0.3 Hz 1.7 Hz 
5  1.7 Hz 0.1 Hz 1.3 Hz 0.3 Hz 
3 0.8 Hz 0.3 Hz 0.9 Hz 0.3 Hz 1.3 Hz  

low-frequency aliasing error   high-frequency aliasing error   

Fig. 22. Comparison of RMSEs of displacement estimated by the Kalman filter-based technique, existing FIR-based technique, and the proposed FIR- 
filter based technique with different vision sampling rate: (a) Excitation 1: 0.1 Hz + 2.2 Hz, (b) Excitation 2: 0.1 Hz + 3.3 Hz, (c) Excitation 3: 0.1 
Hz + 5.1 Hz, (d) Excitation 4: 0.1 Hz + 6.3 Hz, and (e) Excitation 5: 0.1 Hz + 10.3 Hz. 
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5.1.4. Effect of spline interpolation employed in measurement alignment on displacement estimation performance 
Finally, the effect of spline interpolation employed in measurement alignment on displacement estimation performance was 

investigated. The displacements were estimated using vision and acceleration measurements aligned with and without spline inter
polation. Fig. 23 summarizes the RMSE reduction achieved by spline interpolation. The RMSE reduction was not evident when the 
vision measurement did/did not include any temporally aliased errors only in the high-frequency band (>1 Hz). This could be the 
reason for the existing studies to perform measurement alignment without interpolation [15]. However, the RMSEs were significantly 
reduced (up to 40 %) with temporally aliased errors in the low-frequency band (<1 Hz). This indicated that the anti-aliasing stage of 
the proposed technique was very sensitive to the measurement alignment error, and precise alignment between the vision and ac
celeration measurements was mandatory. 

5.1.5. Additional test considering a large non-zero-mean excitation 
Considering that actual structures usually have significant pseudo-static displacements, an additional test was conducted on the 

single-story building model. The experimental setup was the same as mentioned in Section 5.1.1. A 5.1 Hz sinusoidal signal was input 
into the shaker to generate high-frequency displacement for the model. At the same time, the model was manually pushed and released 
to generate large pseudo-static displacement. Fig. 24 shows displacements estimated by fusing 100 Hz acceleration measurement with 
the vision-based displacement with three different sampling rates (i.e., 3 Hz, 5 Hz, and 10 Hz). In all three cases, the proposed 
technique accurately estimated displacement with RMSEs of approximately 0.2 mm. The existing technique accurately estimated 
displacement when using 10 Hz vision-based displacement because the aliased error in the vision-based displacement at 4.9 Hz was 
completely eliminated by the low-pass filter. However, when using 3 Hz and 5 Hz vision-based displacements, the existing technique 
cannot or cannot fully eliminate aliased errors in the vision-based displacements. Therefore, the displacement estimation performance 
of the existing technique was worse than the proposed technique. 

5.2. Pedestrian bridge test 

5.2.1. Field test setup 
A pedestrian bridge test was conducted to validate the proposed technique. As shown in Fig. 25, a uniaxial force balance accel

erometer (EpiSensor ES-U2) and vision camera (Insta360 Pro 2) were installed at the 1/4 span point of the bridge. A Polytech RSV-150 
LDV was installed on the ground to measure the true ground displacement with a resolution of less than 1μ m [40]. A joint of a traffic 
light support structure located at a distance of approximately 2 m was selected as a natural target, and an initial ROI was selected to 
include this target, as shown in Fig. 25(b). Three different excitations (that is, Excitations 1, 2, and 3) were considered in this test and 
the detailed description of these three excitations are listed in Table 4. 

5.2.2. Scale factor and displacement estimation results 
First, vision and accelerometer measurements were aligned using the proposed calibration algorithm, and the scale factor was 

estimated to be 1.345 pixel/mm from 3 Hz vision and 100 Hz acceleration measurements under Excitation 3. Next, the HS dis
placements were estimated using 3 Hz vision and 100 Hz acceleration measurements. Fig. 26 shows the displacement estimation 
results. The proposed technique achieved a more accurate displacement estimation than the existing technique [22] with an RMSE 
reduction of up to 64 %. Note that the improvement of the proposed methods lies in the elimination of temporally-aliased errors in the 
low-sampling vision-based displacement. However, the pedestrian bridge displacement under excitation 2 estimated from 3 Hz vision 

Fig. 23. RMSE reduction achieved using spline interpolation in measurement alignment.  
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measurements had almost no aliasing errors. Therefore, the improvement of the proposed technique is neglectable as shown in Fig. 26 
(b). 

5.2.3. Effect of the sampling rate of vision measurement on displacement estimation performance 
The performance of the proposed technique was further investigated by estimating the displacement by the fusion of 100 Hz ac

celeration and downsampled vision measurement. The vision measurement initially sampled at 30 Hz was downsampled by a factor 

Fig. 24. Comparison of single-story building displacements estimated by the existing [22] and proposed techniques using: (a) 100 Hz acceleration 
+ 3 Hz vision-based displacement, (b) 100 Hz acceleration + 5 Hz vision-based displacement, and (c) 100 Hz acceleration + 10 Hz vision-based 
displacement (Excitation: pseudo static + 5.1 Hz). 

Fig. 25. Overall configuration of a pedestrian bridge test: (a) overview of the bridge and (b) sensor setup.  

Table 4 
Detailed description of three different excitations considered in the pedestrian bridge test.  

# of excitations Descriptions 

1, 2 16 people slowly crossing the bridge and 2 people jumping at one-fourth span point 
3 Four people jumping at one-fourth span point  
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(N) varying from 1 to 61. Then, the sampling rate of the downsampled vision measurement became (30/N) Hz. Fig. 27 summarizes the 
RMSEs of the estimated displacements. Compared with the existing technique [22], the proposed technique showed less sensitivity to 
the sampling rate of vision measurement, and displacements were estimated with a similar error level. The existing technique had an 
estimation performance similar to that of the proposed technique with N below 9. Thereafter, increasing N (that is, downsampling) led 
to large RMSEs for the existing technique; this was attributed to the temporal aliasing issue. 

Notably, the smallest sampling rate required for vision measurement is 3 Hz (N = 10) according to Eq. (1). With a sampling rate 
below 3 Hz, the transition bandwidth of PH became considerably smaller, that is, less than 0.5 Hz. The high-pass filter of the com
plementary filters was then directly used as an anti-aliasing filter (PH = QH). In such cases, the estimated displacement is suppressed in 
the frequency range of [0.5 Hz, 1 Hz], and temporally aliased errors induced by vision-based displacement in this frequency range 
cannot be correctly removed, resulting in inaccurate displacement estimation. However, most bridges have a pseudo-static 
displacement with a frequency below fpseudo and a dynamic displacement with a frequency above their first natural frequency (f1). 
There is no or a weak displacement response between these two frequencies. For the investigated pedestrian bridge, fpseudo was less than 
0.5 Hz, and f1 was larger than 1 Hz, as shown in Fig. 28. Therefore, its displacement could still be accurately estimated using the 
proposed technique, even if the sampling rate of the vision measurement was less than 3 Hz. Fig. 27 shows that the proposed technique 
could accurately estimate the displacement using vision measurement with a sampling rate as low as 0.5 Hz (N = 60). One example is 
shown in Fig. 28 in which displacements were estimated under Excitation 3 using 1 Hz vision and 100 Hz acceleration measurements. 
A much large error was observed from the displacement estimated by the existing technique as shown in Fig. 28(a). The frequency 
spectrum of the displacement estimated using the proposed technique was in good agreement with that of the reference displacement, 
and identical frequency peaks (i.e., 2 Hz, 2.102 Hz, 2.224 Hz, and 2.51 Hz) were identified from the estimated and reference 
displacement. The same frequency peaks were identified from the frequency spectrum of the displacement estimated using the existing 
technique, but the temporally aliased errors at 0.082 Hz and 0.367 Hz were also clearly observed. Here, 49 s data with a sampling rate 
of 100 Hz were used and then the frequency resolution is 0.0204 Hz for both the estimated and reference displacements. 

Fig. 26. Comparison of pedestrian bridge displacement estimated using the existing [22] and proposed techniques: (a) Excitation 1, (b) Excitation 2, 
and (c) Excitation 3. 

Fig. 27. Comparison of displacement estimation accuracy of the proposed and existing techniques using 100 Hz acceleration and downsampled 
vision measurements in the pedestrian bridge test: (a) Excitation 1, (b) Excitation 2, and (c) Excitation 3. 
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6. Conclusions 

This study proposed an HS structural displacement estimation technique using the FIR filter-based fusion of HS acceleration and 
TLS displacement measurements. The temporally aliased error in the TLS displacement measurement was explicitly eliminated to 
ensure that the final estimated HS displacement was unaffected by the error. In addition, the proposed FIR filter-based two-stage fusion 
technique was applied to fuse a vision camera and an accelerometer. Automatic scale factor estimation and measurement alignment 
were achieved using the proposed initial calibration algorithm with short-period HS acceleration and TLS displacement measurements. 
The proposed technique was verified on a numerical simply supported beam model, a single-story building structure, and a pedestrian 
bridge, and the following conclusions were drawn:  

(1) In both numerical simulation and experimental validation, the proposed technique could eliminate the effect of the aliased error 
on displacement estimation accuracy, and an improvement in displacement estimation accuracy was achieved compared to the 
existing technique.  

(2) The scale factor for unit conversion was accurately estimated using the short-period HS acceleration and TLS vision 
measurements.  

(3) Precise alignment of vision and acceleration measurements was vital for the fusion of HS acceleration and TLS displacement 
measurements, and spline interpolation was necessary for measurement alignment.  

(4) With a sampling rate of displacement measurement above the minimum sampling rate defined by Eq. (1), the displacement 
estimation performance of the proposed technique was not very sensitive to the sampling rate of the displacement 
measurement. 

Because the proposed technique does not require vision measurement sampled at a high rate, it is rather promising for imple
mentation on a wireless sensor platform for continuous displacement monitoring. Efforts are underway to develop a displacement 
sensor module that integrates a photodetector for vision imaging, an accelerometer, and a microcontroller. In addition, the proposed 
technique was illustrated by estimating in-plane displacement only in one direction and could be easily extended to bi-directional in- 
plane displacement estimation. However, the existence of out-of-plane displacement or structural rotation may cause inaccurate in- 
plane displacement estimation, and future studies are warranted for three-dimensional structural displacement estimation and even 
six-degree-freedom structural displacement estimation. 
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Fig. 28. Comparison of displacement estimated by the proposed and existing techniques under Excitation 3 using 1 Hz vision and 100 Hz accel
eration measurements: (a) time domain and (b) frequency domain. 
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