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A B S T R A C T   

In this study, a nonlinear ultrasonic signal enhancement method based on phase-based motion 
magnification was proposed. First, a two-dimensional (2D) video was constructed from a one- 
dimensional time-domain ultrasonic signal with an automatically selected pixel scale. The con
structed 2D video was spatially decomposed into multiple sub-bands with different spatial scales. 
The subtle motions of the nonlinear responses of interest were enhanced by phase denoising and 
magnification in each sub-band. Then, the magnified 2D video was reconstructed by collapsing all 
the amplified sub-bands. Finally, a magnified ultrasonic signal was extracted from the magnified 
2D video for further nonlinear ultrasonic analysis. The proposed method was validated with a 
group of synthetic signals at different noise levels, and applied in the estimation of the remaining 
fatigue life of a steel padeye with improved accuracy.   

1. Introduction 

Nonlinear ultrasonics indicate ultrasonic waves whose frequencies are different from the excitation frequencies and amplitudes 
that are highly dependent on the crystalline structure of a material as well as on the existence of defects [1]. Incipient defects (e.g., 
micro fatigue cracks) have been shown to be sources of high nonlinearity [2]. Nonlinear ultrasonics can significantly enhance the 
sensitivity to interactions with micro defects compared with classical linear ultrasonic features. More specifically, nonlinear ultra
sonics manifest through the creation of accompanying harmonics/subharmonics, modulation between different input frequencies, and 
shifting of resonance frequencies as a function of the input energy [3,4]. 

In nonlinear ultrasonic modulation, inputs consisting of low- and high-frequency components are normally applied to the target 
structure through surface-mounted piezoelectric transducers (PZTs) or phased arrays [5], noncontact air-coupled transducers [6], and 
temporally or spatially modulated lasers [7,8]. Nonlinear modulation components appearing at the sum and difference of input fre
quencies can be used for fatigue crack detection and localization in metals and concrete [9,10], delamination or weak bond detection 
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in composites [5,11], and porosity evaluation and microstructure characterization in additively manufactured metallic objects 
[12,13]. 

A technical obstacle to nonlinear ultrasonic modulation is the difficulty in measuring and analyzing the subtle modulation com
ponents, especially in noisy environments. Several attempts have been made to enhance the reliability of defect detection using 
nonlinear ultrasonic modulation. In one method, the input frequencies were swept to find the optimal frequency combination that 
amplifies the defect-induced modulation, given that the modulation intensity is dependent on the input frequencies and is likely to be 
affected by defect configurations [14,15]. However, sweeping the input frequencies is a time-consuming process, which could hinder 
its field applications. An alternative solution utilized a chirp or pulse signal as the input, but its broadband response increased the 
complexity of defect characterization [16,17]. Another method denoised the ultrasonic measurement by filtering a spatial signal 
network acquired by laser scanning [18,19]. However, this method is also restrained by the long data collection time for laser scanning 
and the high cost of laser ultrasonics. 

On the other hand, methods have been developed to capture the nonlinear responses from individual ultrasonic measurements with 
advanced signal processing. Nonzero bispectrum or trispectrum peaks due to defect-induced harmonics and modulations have been 
numerically and experimentally demonstrated under noise interference [20,21]. The spectral correlation between nonlinear modu
lation components was investigated to enhance the nonlinear responses by suppressing noise in the spectral correlation domain 
[22,23]. In addition, the sequential patterns of nonlinear ultrasonic responses can be determined via artificial neural networks, and 
distinguished from ultrasonic signals measured in noisy environments [24,25]. The efficacy of capturing nonlinear responses, how
ever, is limited because these methods focused solely on noise suppression. 

In this study, we propose a nonlinear ultrasonic signal enhancement method inspired by phase-based motion magnification, which 
simultaneously enhances the nonlinear modulations and suppresses noise. The proposed method was applied to estimate the remaining 
fatigue life (RFL) of a steel padeye. The uniqueness of the proposed method is summarized as follows. (1) Ultrasonic signals are 
converted into a two-dimensional (2D) video with automated parameter selection. (2) Subtle nonlinear ultrasonic responses are 
amplified by phase manipulation and magnification of the converted 2D video. (3) Time-domain noise can be effectively suppressed by 
spatial-phase denoising of the converted video. (4) The proposed method can be applied to accurately estimate the RFL. 

The remainder of this paper is organized as follows. Section 2 introduces the theoretical basis of nonlinear ultrasonic modulation 
and phase-based motion magnification. Section 3 describes the proposed motion magnification-based nonlinear ultrasonic signal 
enhancement method. Section 4 presents the validation of the proposed method with synthetic ultrasonic signals. Section 5 discusses 
its application in the RFL estimation for a steel padeye. Section 6 concludes with a summary of the study, its limitations, and future 
work. 

2. Theoretical background 

2.1. Nonlinear ultrasonic modulation 

Nonlinear ultrasonic modulation is a widely used technique based on two distinctive inputs (fa and fb, fa < fb). When a structure 
exhibits linear behavior, the structural response includes spectral components that correspond only to the inputs. However, when a 
structure exhibits nonlinear behavior (e.g., owing to material nonlinearity or defects), its response includes components not only at the 
input frequencies but also their modulation (or sideband) manifestation at fb ± fa. For simplicity, the harmonics and higher-order 
modulations were excluded. For example, nonlinear ultrasonic modulation can occur owing to an asymmetry in the tensile/ 
compression behavior caused by crack opening and closing, as shown in Fig. 1. Correspondingly, a quantitative nonlinear modulation 
parameter β is expressed as [17] 

Fig. 1. Illustration of nonlinear ultrasonic modulation.  
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β ≈
4(Ps(fb − fa) + Ps(fb + fa))

Ps(fa)Ps(fb)κaκb
∝

Ps(fb − fa) + Ps(fb + fa)

Ps(fa)Ps(fb)
(1)  

where Ps
(
fa
)
, Ps

(
fb
)
, Ps

(
fb − fa

)
, and Ps

(
fb +fa

)
are the amplitudes of the structural response at the input and modulation frequencies; 

and κa and κb are the wavenumbers corresponding to fa and fb, respectively. 
β is sensitive to micro defects such as fatigue cracks at their very early stage [5,6]. However, one technical issue is that Ps

(
fb ± fa

)
is 

often at least one or two orders of magnitude smaller than Ps
(
fa
)

and Ps
(
fb
)
. It is difficult to precisely extract Ps

(
fb ± fa

)
in noisy 

environments, particularly when the noise overlaps the nonlinear components in the frequency domain (Fig. 1). Although various 
denoising methods have been developed as mentioned in the previous section, the transition of nonlinear ultrasonic modulation 
techniques to real field applications remains a challenge. 

2.2. Phase-based motion magnification 

Motion magnification is used to amplify the unperceivable changes in a video. It can be divided into Lagrangian and Eulerian 
approaches. Lagrangian approaches extract motions explicitly by tracking the particle trajectories in video frames. However, they are 
computationally intensive and could introduce errors in the amplified motions [26]. In contrast, Eulerian approaches process the video 
separately in space and time without direct particle tracking to significantly reduce computational costs [27]. As shown in Fig. 2, 
Eulerian approaches first spatially decompose a video into an alternative representation, e.g., different spatial sub-bands by Gaussian, 
Laplacian, or steerable pyramids. Pyramid decomposition provides a flexible and convenient multiresolution format for further image 
processing. Advanced decomposition can also be achieved by learning from existing examples [28]. Then, a designed temporal filter is 
applied to the time series of each pixel in the sub-bands to extract the frequency components of interest. The filtered sub-bands are 
amplified by a magnification factor and then collapsed to reconstruct the output video. 

Phase-based motion magnification is based on complex steerable pyramid decomposition. Complex steerable pyramids decompose 
each video frame into multiple sub-bands according to the spatial scale and orientation; their basis functions resemble Gabor wavelets. 
Here, the spatial sub-bands are decomposed as [27] 

S
∼

ω,θ
(
kx, ky, t

)
= I

∼(
kx, ky, t

)
Ψω,θ

(
kx, ky

)
(2)  

where S
∼

ω,θ(kx, ky, t) is the spatial discrete Fourier transform (DFT) of the decomposed sub-bands Sω,θ(x,y,t); ̃I(kx, ky, t) is the spatial DFT 
of each frame in video I(x,y,t); and Ψω,θ

(
kx, ky

)
is the frequency-domain transfer function of the complex steerable pyramids scaled and 

rotated with the spatial scale ω and orientation θ. 
The decomposed Sω,θ(x, y, t) provides access to the local amplitude and phase in each video frame. The subtle motions can be 

enhanced by temporal filtering and amplification of the phase variation in Sω,θ(x,y,t), resulting in S’
ω,θ(x,y,t). The amplified sub-bands 

S’
ω,θ(x, y, t) are then collapsed over all the scales and orientations as 

I
∼’(

kx, ky, t
)
=

∑
S
∼’

ω,θ

(
kx, ky, t

)
Ψω,θ

(
kx, ky

)
(3)  

Fig. 2. Generalized framework of Eulerian motion magnification. (Equations are listed for phase-based motion magnification using complex 
steerable pyramid decomposition.). 
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where S
∼’

ω,θ(kx, ky, t) is the spatial DFT of S’
ω,θ(x,y,t). The output video I′(x, y, t) can be obtained by the inverse spatial DFT of ̃I

′
(kx,ky,t). 

Compared with other Eulerian motion magnification approaches, phase-based motion magnification enables larger magnifications 
and improved noise handling [27,29]. It has been widely applied for vision-based mode shape characterization and defect detection 
[30–32]. In this study, phase-based motion magnification is adopted to enhance the performance of nonlinear ultrasonic analysis. 

3. Motion magnification-based nonlinear ultrasonic analysis 

Fig. 3 presents a flowchart of the proposed motion magnification-based nonlinear ultrasonic signal enhancement method. For a 
structure excited at two distinct frequencies (fa and fb), its one-dimensional (1D) time-domain response s consists of the linear response 
sl (fa, fb), nonlinear response sm (fb ± fa, if the structure behaves nonlinearly), and noise sn. The large motion of the primary linear 
response sl can be separated by the bandpass filtering of s to obtain the small-motion signal ss. 

ss = s − sl = sm + sn (4)  

where ss contains the nonlinear response sm and noise sn. 
The small-motion signal is then amplified by the following three steps: 
Step 1: Conversion of 1D time-domain signal to a 2D video. 
To construct a 2D video I(x,y,t), ss is segmented, and each segment is used to individually establish the pixel movement in the video. 

As illustrated in Fig. 4, ss is divided into N segments, with each segment containing M data points. Here, M is selected to include the 
integer periods of fb ± fa. Each segment is converted into the pixel movement along a designated orientation x and at a fixed y-position 
as 

I
(

ss((j − 1)M + i )
max|ss|

• Δp, j + 1, i • Δt
)

= 1 0 < i ≤ M, 0 < j ≤ N (5)  

where Δt is the time step between two successive data points, and Δp is the pixel scale used to convert the normalized ss into pixel 
movement. Δp indicates the largest pixel movement in the constructed video. Note that Δp is automatically determined by considering 
the noise levels for each ultrasonic measurement s, which will be explained later. I(x, y, t) = 0 is assigned for the other pixels. The size 
of the constructed video is set to (N + 2,N + 2,M) in this study. 

Step 2: Phase-based motion magnification of the constructed 2D video. 
Phase-based motion magnification is applied to the constructed 2D video I(x, y, t) for nonlinear ultrasonic signal enhancement, as 

shown in Fig. 5. The video is decomposed into multiple spatial sub-bands Sω,θ(x, y, t) with octave-bandwidth complex steerable pyr
amids (Eq. (2)). Because the small-motion signal ss is converted into the pixel movement along the x-orientation, only the sub-bands 
Sω,0(x, y, t) (θ = 0) are processed to enhance the nonlinear response. Sω,0(x, y, t) decomposed at various spatial scales ω can accurately 
capture the subtle motions, i.e., the nonlinear response sm, from I(x, y, t). 

For an intuitive demonstration, Sω,0(x, y, t) at a specific spatial scale ω is simplified into a 1D profile Sω,0(x, t) under global 

Fig. 3. Flowchart of the motion magnification-based nonlinear ultrasonic signal enhancement method.  
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translation δ(t) over time (Sω,0(x, t) = Sω,0(x+ δ(t))). Sω,0(x, t) can be rewritten as the sum of the complex sinusoids by Fourier series 
decomposition. 

Sω,0(x, t) =
∑+∞

f=− ∞
Sf (x, t) =

∑+∞

f=− ∞
Af ei2πf (x+δ(t)) (6)  

where Sf (x, t) = Af ei2πf(x+δ(t)) denotes the component at the temporal frequency f with the amplitude and phase of Af and 2πf(x + δ(t)), 

Fig. 4. Video construction using the decomposed small-motion signal ss.  

Fig. 5. Phase-based motion magnification for nonlinear signal enhancement.  
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respectively. Because the phase contains motion information δ(t), it can be altered to manipulate motion as in the Fourier shift the
orem. To enhance the nonlinear response at fb ± fa, we isolate the phase by temporal filtering. 

Bf (x, t) = 2π(fb ± fa)δ(t) (7)  

where Bf (x, t) is the isolated phase at fb ± fa. 
The noise sn can alter δ(t) and cause the phase signal 2πf(x+δ(t)) to become noisy. The direct amplification of the phase signal 

could amplify the noise in the output video. In this study, because the time length of each segment of ss equals to integer periods of the 
nonlinear modulation components at fb ± fa, the phase caused by the nonlinear response sm remains identical among the different 
pixels, and the phase variations are caused only by the noise sn. Therefore, phase denoising can be performed by low-passing Bf (x, t)
spatially, e.g., by amplitude-weighted spatial Gaussian smoothing of each video frame. 

Bs
f (x, t) =

(Bf (x, t)Af )*Kρ(x)
Af *Kρ(x)

= 2π(fb ± fa)δs(t) (8)  

where Kρ(x) is the Gaussian kernel provided by e−
x2
ρ2 , ρ is set as equal to the spatial domain filter width (ρ = N+2 in this study) to 

maximize the smoothing effect, and δs(t) is the denoised translation. 
The spatially filtered phase Bs

f (x, t) is then multiplied by the magnification factor α, and added to the phase of Sf (x, t) to obtain the 

motion-magnified S′
f (x, t). 

S’
f (x, t) =

{
Sf (x, t)eiαBs

f (x,t)

Sf (x, t)
=

{
Af ei2πf (x+δ(t)+αδs(t))

Af ei2πf (x+δ(t))
f = fb ± fa
f ∕= fb ± fa

(9)  

where the S′
f (x, t) at fb ± fa becomes Sf (x+(1+α)δ(t)) if δs(t) ≈ δ(t). In this case, the motion at fb ± fa is modified 1+α times. The 

amplified sub-band S′
ω,0(x, t) can be achieved by the sum of S′

f (x, t). Note that for phase-based motion magnification using octave- 
bandwidth complex steerable pyramids, the bound for α should satisfy [27] the following: 

αδs(t)〈
λ
4
=

fs

4f
(10)  

where λ is the spatial wavelength corresponding to f captured at a frame rate (or the sampling rate for ultrasonic measurements in this 
study) of fs. It can be seen in Eq. (10) that the low-frequency motions could be magnified further than the high-frequency motions. In 
this study, a larger α is feasible as long as the ultrasonic response s is measured at a higher sampling rate fs. A higher fs is much easier to 
achieve in time-domain signal measurement than in image acquisition. 

The above process can be generalized to a 2D sub-band Sω,0(x, y, t) with local motions δ(x, y, t) to obtain the amplified sub-band 
S′

ω,0(x,y, t). The motion-magnified video I′(x, y, t) is then reconstructed by collapsing all the amplified sub-bands S′
ω,0(x, y, t) over all 

the spatial scales (Eq. (3)). 
Step 3: 1D time-domain signal extraction. 
The amplified small-motion signal s′

s (s′
s = s′

m + s′
n) is extracted from the video I′(x, y, t) using the reverse process in Eq. (5). As 

shown in Fig. 3, Steps 1–3 are repeated with varying pixel scales Δp until the following condition is satisfied. 

Es′n
≤ Esn (11)  

where Es′n 
and Esn are the noise energies of s′

n and sn, i.e., the energies of s′
s and ss minus the components at fb ± fa, respectively. The final 

magnified ultrasonic signal s′ is expressed as 

s′ = sl + s′
s = sl + s′

m + s′
n (12)  

where the magnified s′ can be used for further nonlinear ultrasonic analysis. 

4. Validation with synthetic ultrasonic signals 

4.1. Generation of synthetic signals 

A group of synthetic ultrasonic signals was generated to evaluate the proposed motion magnification-based nonlinear ultrasonic 
signal enhancement method. The linear components sl are unit amplitude sinusoidal signals at fa = 45kHz and fb = 206kHz. The 
corresponding nonlinear components sm are at fb − fa = 161kHz and fb + fa = 251kHz. 

sl = sin(2πfat)+ sin(2πfbt) (13)  

sm = 0.01 × sin(2π(fb ± fa)t) (14) 
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where the amplitudes of sm are one hundredth of the amplitudes of sl. 
Synthetic intact si and damaged sd ultrasonic signals were generated with the added Gaussian white noise sn. 

si = sl + sn  

sd = sl + sm + sn (15)  

where sn was created with different signal-to-noise ratios (SNR s) with respect to sm ranging from − 11 to − 47 with a step of − 4. The 
SNR is defined as 

SNR = 10log
Esm

Esn

(dB) (16)  

where Esm and Esn are the energies of sm and sn, respectively. The SNR was selected such that sm could be drowned by sn in the frequency 
domain as the SNR decreased, as shown in Fig. 6. Note that all spectral plots in this study were normalized with respect to its largest 
linear response. All the si and sd signals were discretely sampled at 1 MHz for 100 ms (100,000 data points). For the motion 
magnification in this section, each signal was divided into 100 segments (M = 1000, N = 100), and the magnification factor α was set 
as two. 

4.2. Automated pixel scale selection 

Fig. 7(a) shows the noise energy ratio 
E

s′n
Esn 

for an intact signal si (SNR = − 31 dB) as the video was constructed with different pixel 

scales Δp for motion magnification. Fig. 7(b) shows the representative spectral plots of the magnified s′
i corresponding to different Δp. 

It can be seen that 
Es′n
Esn 

decreased as Δp increased and the condition in Eq. (11) was satisfied when Δp = 5. Although Eq. (11) still holds 
when Δp > 5, Δp = 5 was selected because a larger translation δs(t) (proportional to Δp) prevents the selection of a larger magnifi
cation factor α, as shown in Eq. (10). 

The selected Δp for all the si and sd signals with different SNR s are shown in Fig. 8. For si, the selected Δp remained constant 
because the separated small-motion signals ss only contained noise sn, and were normalized for video construction (Eq. (5)). However, 
the selected Δp for sd varied for different SNR s. It was inferred that the signal composition of ss (ss = sm + sn) affected the selection of 
Δp in the video construction for proper motion magnification. 

4.3. Effect of phase denoising 

Fig. 9 shows the spectral plots of an intact signal si (SNR = − 31 dB) magnified with and without phase denoising. It can be seen that 
the incorrect motions of noise sn at fb ± fa could be amplified once phase denoising was omitted from the motion magnification process. 
Fig. 10 compares the nonlinear modulation parameter β calculated from si with various SNR s, and the magnified s′

i with and without 
phase denoising. The β-values remained almost identical between si and s′

i with phase denoising (Fig. 10(a)). In contrast, the deviation 
of the β-values of s′

i without phase denoising from the β-values of si progressively increased as the SNR decreased (Fig. 10(b)). 

4.4. Motion magnification at different orientation 

When the time-domain signal was converted into a video, the pixel movement was designated along the x-orientation (Fig. 4). 
Thereafter, only the sub-bands Sω,θ(x, y, t) that decomposed along the x-orientation (θ = 0) were magnified for nonlinear signal 
enhancement. Fig. 11 shows the spectral plots of the damage signal sd (SNR = − 47dB) magnified with the sub-bands along the x- 
orientation (θ = 0) and the y-orientation (θ = π

2). It can be seen that the nonlinear components sm only existed in Sω,0(x,y,t), and were 

Fig. 6. Representative synthetic signals sd in the frequency domain when the SNR is − 11, − 31, and − 47 dB.  
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Fig. 7. (a) Noise energy level in the magnified signals of si (SNR = − 31dB) corresponding to different pixel scales. (b) Representative signals 
magnified at various pixel scales. 

Fig. 8. Pixel scale selection for signals with different SNR s.  

Fig. 9. Representative signal si (SNR = − 31dB) magnified (a) with phase denoising and (b) without phase denoising.  
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Fig. 10. β of signal si with various SNR s magnified (a) with phase denoising and (b) without phase denoising.  

Fig. 11. Representative signal sd (SNR = − 47dB) magnified along the (a) x-orientation and (b) y-orientation.  

Fig. 12. (a) Representative magnified signals of sd with different SNR s (constant sm energy). (b) The corresponding β-values of sd and magnified 
s′
d signals. 
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magnified by approximately three times (= 1 + α) (nine times in the spectral plots between Fig. 6 and Fig. 11(a)). 

4.5. Validation with various SNRs 

Fig. 12(a) shows the representative spectral plots of the magnified signals of sd with different SNR s. The nonlinear components sm 
were amplified by approximately the same extent regardless of the noise interference as shown in Fig. 6. Fig. 12(b) shows the β-values 
of sd with different SNR s and those of the magnified s′

d. The relative standard deviation of the β-values of sd (0.227) was approximately 
2.5 times larger than those of the magnified s′

d (0.091). 
Another group of damage signals sd was created with the constant noise sn but varying amplitudes of the nonlinear components sm. 

Here, sd was expressed as sd = sl + asm + sn, while the amplitude ratio a of sm ranged from 0.1 to 1. The noise sn was obtained at SNR =

− 47dB with respect to sm. Fig. 13(a) shows the representative spectral plots of the magnified signals of sd with different amplitude 
ratios of sm. Fig. 13(b) shows the β-values of sd with different amplitude ratios of sm and those of the magnified s′

d. Because the nonlinear 
components sm were buried within the noise sn when the SNR = − 47dB (Fig. 6), the variations in the amplitude ratio a of sm had almost 
no effect on the β-values of sd (Fig. 13(b)). In contrast, the magnified nonlinear components were clearly observed in s′

d (Fig. 13(a)), and 
the β-values of s′

d increased proportionally with respect to the amplitude ratio a of sm (Fig. 13(b)). 

5. Application to RFL estimation in a steel padeye 

5.1. Experimental procedure 

Padeyes are used to connect tension cables in bridges or link an offshore floating structure to its anchorage; hence, they are 
constantly subjected to cyclic loading and are vulnerable to fatigue failure [33]. In this section, the proposed method was applied to 
estimate the RFL of a sample padeye made of SM490 steel. As shown in Fig. 14(a), the height and bottom width of the padeye were 132 
mm, while the pinhole radius was 22 mm. The thickness of the padeye around the pinhole (including two cheek plates) was 5 mm, 
while the thickness of the main plate was 3 mm. Three PZTs (APC International, APC850) with a 9 mm diameter and 0.5 mm thickness 
were attached to the cheek plate for ultrasonic inspection. PZT A and PZT B were used for ultrasonic generation at fa and fb, 
respectively, while PZT C was used for measurement. 

As shown in Fig. 14(b), a customized holder was used to fix the padeye to the universal testing machine (UTM, Instron 8801). Cyclic 
loading at 10 Hz was applied along the y-axis of the sample. The loading amplitudes were 5–50 kN. Fatigue cracks appeared from the 
edge of the pinhole, and the sample failed at 230 k fatigue cycles (Fig. 14(b)). 

Fig. 13. (a) Representative magnified signals of sd with different amplitude ratios of sm (constant sn energy,SNR = − 47dB). (b) The corresponding 
β-values of sd and magnified s′

d signals. 
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Ultrasonic inspection was periodically performed during the UTM test of the sample. The National Instruments system was adopted 
for data acquisition, which involved the use of two arbitrary waveform generators (AWG, PXI-5421), a digitizer (DIG, PXI-5122), and a 
controller (PXIe-8840) (Fig. 14(c)). The input frequencies were selected as fa = 50 kHz and fb = 193 kHz, considering the local 
resonance characteristics of the sample and to avoid the overlap of fb ± fa with the higher-order harmonic components of fa [14]. The 
amplitudes of the two excitations were 12 V. The corresponding ultrasonic response signals s were measured at a 1 MHz sampling rate 
for 100 ms at different fatigue cycles (n = 0, 30, 60, 90, 120, 150, 180, 190, 200, 210, 220 (k)). 

5.2. Test results 

Fig. 15 shows the ultrasonic response s measured when n = 30 k and its magnified s′ after motion magnification. Each measured s 
was divided into 100 segments (M = 1000, N = 100), while the magnification factor α was set to two. It can be seen in Fig. 15(b) that 
the nonlinear components at fb ± fa became observable after motion magnification. The nonlinear response at n = 30 k was attributed 
to the inherent material nonlinearity of the padeye sample. 

For all the ultrasonic signals measured at different fatigue cycles, the selected pixel scales Δp are shown in Fig. 16. The β-values of s 
and magnified s′ are shown in Fig. 17. Consistent with the previous section, Δp varied as the signal composition (i.e., nonlinear 
response and noise) changed in the measurements at different fatigue cycles. The β-values in Fig. 17(a) and (b) showed a similar trend 
as they were calculated before and after motion magnification. When fatigue cracks were initiated during the UTM test, the β-value 
increased owing to the intensified crack opening and closing. Once the crack length reached the critical value, the fatigue cracks 
transformed into fracture cracks, and the β-values abruptly decreased [34]. However, the β-values of s (Fig. 17(a)) in the early fatigue 
cycles (up to 180 k) in the UTM test fluctuated because the weak nonlinear responses caused by material nonlinearity or early stage 
fatigue cracks could be easily drowned out by the measurement noise. 

An RFL estimation method based on nonlinear ultrasonic modulation was adopted [35], which consists of three steps. 
First, the appearance of a fatigue crack is detected by observing the increase in the β-values. Once a fatigue crack is detected, it is 

assumed that crack initiation did not occur until the previous inspection stage (defined as the initial stage). The fatigue cycle at the 
initial stage is denoted as ni, and an initial nonlinear parameter βi is estimated as the β-value at the initial stage. The occurrence of 
fatigue cracks was detected at 150 k fatigue cycles, as shown in Fig. 17(b); hence, ni = 120 k and βi = 1.96× 10− 4. For the β-values 
calculated before motion magnification (Fig. 17(a)), owing to their fluctuations in the early phase of the UTM test, it was difficult to 

Fig. 14. (a) Steel padeye, (b) fatigue test, and (c) ultrasonic measurement test.  
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identify the emergence of fatigue cracks, which could lead to inaccurate estimates at the initial stage. Here, in this study, the same 
initial stage (ni = 120 k) was selected for the RFL estimation using the β-values calculated before motion magnification, and the 
corresponding βi = 1.46× 10− 5. 

Second, a fatigue index (FI) is defined as a function of the parameter β to obtain a monotonically increasing relationship between 
the FI and fatigue cycles up to failure. 

Fig. 15. Representative ultrasonic signals and their spectral plots (a) before motion magnification and (b) after motion magnification (n = 30 k).  

Fig. 16. Pixel scale selection for signals obtained from different fatigue cycles.  

Fig. 17. β-values of the ultrasonic signals calculated (a) before motion magnification and (b) after motion magnification.  
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FI(n) = 1 − (
βm(n)

βi
)
− 1 (17)  

where βm is the maximum β-value up to the current fatigue cycle n, and FI is obtained by normalizing βm with respect to βi. 
Third, it has been proven that the FI values can be fitted as a power function of the fatigue cycles (n − ni) as 

FI(n) = A(n − ni)
B (18)  

where A and B are estimated by fitting the obtained FI values up to the current fatigue cycles. The total fatigue life of the sample is then 
acquired as the number of fatigue cycles corresponding to FI = 1, thus estimating the RFL. 

Fig. 18(a) and (b) show the FI values and fitted power functions obtained at n = 190 k and 210 k, respectively. At n = 190 k (Fig. 18 
(a)), the RFLs were estimated as 117.8 k and 67.6 k before and after motion magnification, with corresponding estimation errors of 
77.8 k and 27.6 k, respectively. At 210 k (Fig. 18(b)), the RFLs were estimated as 9.1 k and 22 k before and after motion magnification, 
with lower estimation errors of 10.9 k and 2.0 k, respectively. Table 1 lists the estimated RFLs and estimation errors for four different 
fatigue cycles. It can be seen that the performance of the RFL estimation model gradually improved as more ultrasonic signals were 
accumulated during the UTM test. The RFL estimation exhibited better performance using β-values after motion magnification, 
especially at the early stage of the UTM test. This confirms that the proposed method effectively enhanced the nonlinear components 
and resisted noise interference even when the nonlinear components were buried in the noise. 

A long short-term memory (LSTM) network for noise reduction was adopted for comparison [25]. An LSTM network is trained to 
learn the inherent sequential patterns from ultrasonic measurements, including the nonlinear responses, and it does not require any 
pre-knowledge of the nonlinear frequencies. Here, a prediction of 100 ms (same as the signal length used for motion magnification) 
with reduced noise was obtained from the trained LSTM network and used for β calculation. Fig. 19(a) shows the spectral plot of the 
predicted signal at n = 30 k. It can be seen that the noise was effectively reduced compared with the original signal in Fig. 15(a). 
However, the weak nonlinear components due to inherent material nonlinearity were hardly observed compared with the result after 
motion magnification (Fig. 15(b)). Fig. 19(b) shows the β-values calculated using the predicted signals at different fatigue cycles. A 
similar trend was observed in Fig. 17, but the amplitudes of β were similar to those in Fig. 17(a) before motion magnification. This is 
because the LSTM network focused on noise suppression rather than nonlinear signal enhancement. Table 2 lists the estimated RFLs at 
different fatigue cycles based on the β-values in Fig. 19(b). The accuracy improvement of the estimated RFLs was not as high as that in 
Table 1 with motion magnification, given that the proposed method actively enhanced the nonlinear modulations and suppressed 
noise. 

Fig. 18. RFL estimation results before/after motion magnification at (a) n = 190k and (b) n = 210k.  
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6. Conclusion 

In this study, a motion magnification-based nonlinear ultrasonic signal enhancement method was proposed. A 2D video was first 
constructed from a 1D time-domain ultrasonic signal with an automatically selected pixel scale. Then, the constructed 2D video was 
spatially decomposed into multiple sub-bands with different scales. The subtle motions of the nonlinear responses of interest were 
amplified by temporally filtering and modifying the phase variations in each sub-band. The magnified 2D video was reconstructed by 
collapsing all the amplified sub-bands, from which a magnified ultrasonic signal could be extracted for further nonlinear ultrasonic 
analysis. Based on the validation tests with the synthetic and experimental data shown in this study, the following conclusions can be 
drawn:  

(1) Because a 1D time-domain signal was used to establish the pixel movements in a 2D video with a predefined moving orientation, 
only the decomposed sub-bands along the same moving orientation required processing (θ = 0 in this study).  

(2) The sub-bands decomposed at various spatial scales with complex steerable pyramids helped capture the subtle motions of the 
nonlinear responses even when they were buried in noise (SNR = − 47dB in this study). Noise was further suppressed by 
spatially low-pass filtering the phase variations in the decomposed sub-bands.  

(3) The small-motion signal that contained nonlinear components was easily separated from the ultrasonic measurement with 
known input frequencies, and temporal filtering was readily designed as a bandpass of the modulation frequencies. Temporal 
filtering can be modified to enhance different nonlinear components (e.g., harmonics or higher-order modulations).  

(4) A more accurate RFL estimate at the early stage of fatigue life could be obtained with the proposed nonlinear ultrasonic signal 
enhancement method than with the conventional signal analysis method. 

The limitations of the proposed method include high computational costs, especially that for phase denoising, and the requirement 
of a sufficiently long time-domain signal (100 ms in this study). Future work is warranted to investigate different strategies to convert a 

Table 1 
RFL estimation results at different fatigue cycles.   

Current cycles Estimated RFL Error 

Before motion magnification 190 k 117.8 k 77.8 k 
200 k 85.0 k 55.0 k 
210 k 9.1 k 10.9 k 
220 k 9.1 k 0.9 k 

After motion magnification 190 k 67.6 k 27.6 k 
200 k 54.0 k 24.0 k 
210 k 22.0 k 2.0 k 
220 k 9.3 k 0.7 k  

Fig. 19. (a) Representative ultrasonic signal predicted by the LSTM network (n = 30 k). (b) The corresponding β-values of the predicted ultrasonic 
signals at different fatigue cycles. 

Table 2 
RFL estimation results with the LSTM network.   

Current cycles Estimated RFL Error 

With LSTM network 190 k 119.6 k 79.6 k 
200 k 58.5 k 28.5 k 
210 k 9.1 k 10.9 k 
220 k 9.3 k 0.7 k  
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time-domain signal into a 2D video, increase the magnification factor (α = 2 in this study), and explore applications in noisy envi
ronments, such as ultrasonic inspection in metal additive manufacturing. 
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