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A B S T R A C T   

A recent trend in vision-based displacement measurement is to place a camera at the measurement point and 
capture the images of the surrounding areas. In this scheme, a proper region of interest (ROI) should be selected 
from the captured images. This paper proposes an automated ROI selection technique to improve displacement 
estimation accuracy. The image frames that capture larger movements of the surrounding areas were selected, 
and the features in the selected frames were grouped using clustering algorithms. The feature group with 
consistent movement and high density was finally selected as the optimum ROI. The proposed technique was 
validated through laboratory and field tests. A displacements estimation technique previously proposed by the 
authors were used to compared the optimum ROI and four intuitively selected ROIs. In all the tests, the 
displacement estimates from the optimum ROI showed a smaller RMSE (less than 2 mm) than those from other 
ROIs.   

1. Introduction 

The displacement of a civil structure plays a vital role in the moni
toring and control of the structure, as it is directly related to the stiffness 
of the structure and intuitively represents the soundness of the structure. 
Several sensors have been introduced to measure or estimate the dis
placements of civil structures. Conventional sensors include linear var
iable differential transformers (LVDT) [1] and accelerometers [2,3]. 
However, installing an LVDT in the field is difficult because its ends 
should be connected at the measurement point and a stationary location. 
Acceleration measurements from accelerometers are converted to 
displacement through double integration, which causes serious errors in 
the low-frequency region. 

In recent decades, several noncontact sensors, such as the real-time 
kinematic global navigation satellite system (RTK-GNSS) [4], laser 
Doppler vibrometer (LDV) [5] and radar systems [6,7], have been 
applied to structural displacement estimation. However, RTK-GNSS, the 
most common sensor for structural displacement monitoring, has a low 
sampling rate of up to 20 Hz and a limited accuracy of approximately 20 
mm in the vertical direction. Although LDV and radar systems are 
capable of high-accuracy and high-sampling displacement measure
ments, these devices are expensive and require a stationary location for 
installation, making them impractical for civil infrastructure. 

As an alternative to these traditional sensors, vision cameras have 
emerged as noncontact sensors for various applications [8–12], and 
recently combined with unmanned aerial vehicles (UAVs) to expand 
their usability [13]. When applied to structural displacement estima
tion, a vision camera is commonly installed at a stationary location and 
is aimed at artificial or natural targets on a target structure [14–16]. 
Various computer vision algorithms, such as template matching [17,18], 
optical flow [19,20] and feature matching algorithms [21] can be 
applied to vision images to extract the motion of targets. In this pro
cedure, the field of view (FOV) of the vision camera is usually set to be 
sufficiently wide to cover artificial or natural targets, and the region of 
interest (ROI) is cropped from the vision images for displacement 
estimation. 

However, this displacement estimation procedure has three signifi
cant limitations. First, the vision camera must be positioned at a sta
tionary location in the proximity of a target structure, where the target 
structure has in-plane motion relative to the fixed vision camera. 
However, identifying such a location can be challenging when the 
structure is located offshore or in a metropolitan area. Second, the 
displacement in a physical length unit should be converted from the 
translation in pixel units by using a scale factor. The scale factor should 
be estimated manually by measuring the dimensions of the target [22] 
or the distance between the target and the vision camera [16] in physical 
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units in advance; however, this manual procedure is challenging in the 
field and can be a source of error for the estimated displacement. Finally, 
these vision-based techniques incur high computational costs, which 
hinder the real-time estimation of displacement with a high sampling 
rate. 

Several studies have been conducted to resolve these shortcomings. 
The first shortcoming has been effectively addressed by installing a 
vision camera directly at the measurement point of the target structure 
[23]. In addition, the fusion of an accelerometer and a vision camera 
collocated on a target structure, as shown in Fig. 1 [24,25] can be a 
partial remedy for the second and third shortcomings in structural 
displacement estimation. This approach can enable autonomous scale 
factor estimation without any prior knowledge of the dimensions of a 
natural target or the target-to-camera distance and real-time high-sam
pling displacement estimation using asynchronous low-sampling vision 
images and high-sampling acceleration measurements based on an 
adaptive multi-rate Kalman filter. However, the ROI selection process 
was still manually performed by trial-and-error to cover one of the 
targets captured in the FOV of the camera. This ROI selection becomes 
cumbersome and time-consuming as the number of targets increases. In 
addition, it is difficult to identify the optimal position and size of an ROI 
because the ROI area is manually designated for each target. This 
imprecision in the manual ROI selection process can lead to inaccurate 

displacement estimation. 
This paper proposes an automated ROI selection technique for 

structural displacement estimation using a vision camera. After a vision 
camera is mounted on the measurement point of a target structure, it 
starts recording nearby objects and/or structures and captures the vi
bration of the target structure through video images. The proposed 
technique selects several key-frames in which large movements of the 
target structure are captured. The key-frames and the first frame in the 
video are compared to construct several types of maps to assess the 
quality of the feature points detected in the key-frames. Two criteria, 
coefficient of variance (CV) of feature-based translations and feature 
density (FD), were adopted for assessing the feature point quality in the 
proposed technique, and the feature points were classified based on CV 
and FD by two unsupervised clustering algorithms. Finally, a cluster 
with a small CV and high FD was selected as the optimum ROI. 

The main contributions of this study are as follows: (1) the proposed 
technique automates the optimum ROI selection process for computer- 
vision-based displacement estimation of civil structures, (2) it enables 
highly efficient optimum ROI selection by reducing computational cost 
through the automatic selection of key-frames with relatively large 
structural movements of a target structure, and (3) the optimum ROI can 
be selected much more precisely than existing manual processes by 
assessing feature points based on the CV of feature-based translation and 

Fig. 1. Existing displacement estimation technique fusing an asynchronous vision camera and accelerometer [24].  

Fig. 2. Overview of the automated ROI selection technique proposed in this study.  
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FD. 
The remainder of this paper is organized as follows. The proposed 

ROI selection technique is described in Section 2. The performance of 
the proposed technique is validated using a laboratory test in Section 3, 
and a field test on a pedestrian bridge is presented in Section 4. The 
concluding remarks are presented in Section 5. 

2. Development of the proposed automated ROI selection 
technique 

In the configuration of structural displacement measurement using a 
vision camera mounted on a measurement point on a structure, the 
vision camera should keep track of stationary natural targets near the 
measurement point. As it is vital to select the optimum ROI that includes 
one of these natural targets, the proposed technique automates the ROI 
selection process by using a short-period video recorded after the 
installation of the vision camera. As shown in Fig. 2, the proposed 
technique consists of two stages: (1) the selection of key-frames with 
large target structural movement from the short-period video (i.e., 1 
min) and (2) frame area clustering for optimum ROI selection. The 
working principles of Stages 1 and 2 will be explored in detail in Sections 
2.1 and 2.2, respectively. 

2.1. Stage 1: Selection of key-frames with large target structural 
movement 

In Stage 1, key-frames, the frames in which the target structure has a 
relatively large movement in the recorded video, are selected. The se
lection of key-frames is an essential task because applying Stage 2 to all 
frames in the recorded video is time-consuming and requires a high 
computational cost. In addition, frames that contain relatively small 
structural displacements are of no use in Stage 2 because pixel dis
cretization errors in these frames inhibit the accurate evaluation of 
feature-based translation properties. Stage 1 consists of three sub-steps: 
the construction of a translation map, active and inactive pixel counting, 
and the calculation of a motion index. 

2.1.1. Translation map construction 
In this sub-step, a translation map that illustrates the feature trans

lations of a frame (i.e., the ith frame) with respect to the first frame in the 
recorded video is constructed using feature matching and spatial 
average filtering. 

First, the proposed technique detects feature points from the first and 
the ith frame and matches the feature points in the two frames, as shown 
in Fig. 3(a) and (b), using speeded-up robust features (SURF) [26], a 
feature matching algorithm with a relatively lower computational cost 

Fig. 3. Flowchart of translation map construction.  
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and higher accuracy compared with other algorithms [27,28]. Let Mj
i 

denote the jth feature point in the ith frame, and let (Mj
1,M

j
i) denote the 

matched pair of the jth feature points in the first and ith frame. For each 
matched pair, the translation dj

i is calculated as the distance between Mj
i 

and Mj
1 in a pixel unit, as shown in Fig. 3(c). Assuming that the pixel 

dimensions of the frame m× n, an m × n translation matrix Pi is con
structed by assigning each dj

i to the element corresponding to the posi
tion of Mj

1 as shown in Fig. 3(d). Note that, when the position of an 
element in Pi does not correspond to any matched pair, its value is set as 
NaN. 

Suppose that the translations of the feature points have a Weibull 
distribution. Some matched pairs, e.g., (Ms

1,M
s
i ), with translations 

significantly larger than those of other matched pairs are regarded as 
mismatched pairs and removed, as shown in Fig. 3(e), to be ignored in 
the following steps. Note that mismatched pairs with small translations 
have a negligible impact on ROI selection after spatial average filtering 
and time averaging, which will be explored later in this section. 

Subsequently, a spatial averaging filter with a moving mask is 
applied to Pi as shown in Fig. 3(f), and a translation map Ti can be 
constructed as follows: 

Ti
(
rx, ry

)
= E[Pi(x, y)

⃒
⃒
(
x, y) ∈ R2,Pi(x, y) ∕= NaN (1) 

where R2 is the region of the spatial average filter mask, and is set to 
an odd positive integer. 

(
rx, ry

)
denotes the coordinates of the center of 

the mask, and E[•] denotes the expectation operator. While an element in 
Pi indicates the translation of a single feature point, the value of Ti be
comes the average translation within the mask. Therefore, an element in 
Ti can be a number even though the corresponding element in Pi is NaN. 

2.1.2. Active and inactive pixel counting 
In this sub-step, all the features in the translation map are divided 

into active and inactive pixels, and the numbers of active and inactive 
pixels are counted. Here, a pixel with a translation value (Ti(x,y)) larger 
than the pixel discretization error (0.5 pixel unit) is defined as an active 
pixel; otherwise, it is defined as an inactive pixel. Fig. 4 shows the 
overall process of counting of the active and inactive pixels. First, a bi
nary process is applied to Ti to construct the ith active pixel map (Ai) and 
inactive pixel map (Bi) using Equations (2) and (3): 

Ai(x, y) =
{

1 if |Ti(x, y) |〉0.5
NaN otherwise , (2)  

Bi(x, y) =
{

1 if |Ti(x, y) | ≤ 0.5
NaN otherwise . (3) 

When a large displacement of the target structure occurs in the ith 

frame, the features captured in the frame are also moved; however, the 
amount of movement of the features is not identical because the distance 
from the vision camera and the features are different. In this context, the 
elements in Ai whose value is 1 indicate that the corresponding natural 
targets are sufficiently close to the measurement point to observe an 
apparent translation. However, for natural targets that are far away from 
the target structure, 1 is assigned to the corresponding elements of Bi. 
The number of active and inactive pixels of Ai and Bi are denoted as ai 

and bi, respectively, and calculated using the following equation: 

ai =
∑

{Ai|Ai(x, y) ∕= NaN }, bi =
∑

{Bi|Bi(x, y) ∕= NaN }. (4)  

2.1.3. Motion index calculation 
The previous two steps were repeated for all the frames in the 

recorded video, and then the active and inactive pixel numbers were 

Fig. 4. Active and inactive pixel counting.  

Fig. 5. Translation-based motion index calculation for key-frame selection.  
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counted for all the frames. In this sub-step, a motion index is calculated 
for each frame using its active and inactive pixel numbers, and several 
frames with large motion indices are selected. The motion index is a 
scalar value that indicates the amount of displacement that occurs in a 
specific frame. 

Two vectors of active and inactive pixel numbers, denoted as a and b, 
respectively, are obtained, as shown in Fig. 5(a). 

a = ( a1 a2 ⋯ aN )
T
, b = ( b1 b2 ⋯ bN )

T
, (5) 

where N is the number of frames in the recorded video. If several 
feature points are detected from natural targets farther from the target 
structure in practice, bi is substantially greater than ai in most frames. 
Therefore, ai and bi must be normalized to cope with the differences in 
active and inactive pixel numbers. Therefore, a min–max normalization 
in Equation (6) is applied to ai and bi to obtain their normalizations, 
denoted as ai and bi, respectively (Fig. 5(b)): 

ai =
ai − min(a)

max(a) − min(a)
, bi =

bi − min(b)
max(b) − min(b)

. (6) 

The motion index ηi is then defined as the difference between ai and 
bi as shown in Equation (7): 

ηi = ai − bi. (7) 

As the amplitude of the target structure’s movement increases, ai 

becomes larger and bi becomes smaller, since more pixels moves larger 
than the pixel discretization error in Equations (2) and (3). Therefore, ηi 
is proportional to the amplitude of the target structural movement and is 

in the range of [-1, 1]. ηi = 1 indicates that all the pixels in a frame are 
active pixels, indicating that a significant structural displacement occurs 
at the measurement point, whereas ηi = − 1 indicates that all the pixels 
in a frame are inactive and the frame is not appropriate for ROI selec
tion. Hence, several frames with the largest motion indices were selected 
as key-frames, as shown in Fig. 5(c). 

2.2. Stage 2: Frame area clustering for the optimum ROI selection 

Generally, a natural target area with high feature quality in the 
recorded frame is intuitively regarded as the ROI. In Stage 2, the opti
mum ROI is introduced based on the following criteria: (1) the trans
lations of all feature points detected within the ROI are almost identical 
and (2) sufficient feature points are detected within the ROI. 

The first criterion indicates that all the feature points in the optimum 
ROI need to have the similar distance to the vision camera. The criterion 
can be quantitatively assessed using the variation of the translation 
because different translation of two feature points indicates different 
distances from the vision camera. However, the variation of the trans
lation can also be affected by the distance; it becomes smaller as the 
distance increases. The CV was used in this study to eliminate the de
pendency on distance. Here, the smaller the CV value, the more identical 
is the amplitude of translation. The ROIs chosen based on the first cri
terion were further examined using the second criterion, which sifts out 
the ROIs with more feature points. The second criterion is quantified 
using the FD, which denotes how many feature points are extracted in a 
unit area of an ROI. The higher the FD value, the more stable is the 
monitoring. 

Fig. 6. Overview of frame area clustering technique for the optimum ROI selection.  

Fig. 7. Construction process of CV and FD maps.  

J. Choi et al.                                                                                                                                                                                                                                     



Measurement 218 (2023) 113158

6

In this section, the procedures for selecting the optimum ROI with a 
small CV and high FD values are explored in detail based on unsuper
vised clustering techniques, as shown in Fig. 6. Let u frames be selected 
as key-frames after Stage 1, active-translation matrices (AP) are gener
ated by setting all the elements of the key-frames to NaN, except for 
active pixel elements. After the CV and FD maps were constructed from 
these active-translation matrices (Section 2.2.1), the part of the CV map 
with the smallest CV value was determined using Gaussian mixture 
model (GMM)-based clustering (Section 2.2.2). When the cluster with 
the smallest CV is separated into different pieces, it is further clustered 

by the density-based spatial clustering of applications with noise 
(DBSCAN). Finally, a spatially clustered FD map was constructed using 
the spatially clustered map and FD map, and the cluster with the highest 
FD was selected as the optimum ROI (Section 2.2.3). 

2.2.1. CV and FD map construction using a moving mask 
In Section 2.2.1, CV and FD maps were constructed by applying a 

moving mask to the CV and FD values, which are important indicators of 
the quality of an ROI (Fig. 7). First, translation matrices (Pl(l = 1,⋯u)) 
are constructed for u selected key-frames as shown in Fig. 2(d), and 

Fig. 8. Selection process of smallest-CV cluster.  

Fig. 9. Construction of spatially clustered FD map.  

J. Choi et al.                                                                                                                                                                                                                                     



Measurement 218 (2023) 113158

7

active-translation matrices (APl(l = 1,⋯u)) are created by leaving only 
the active pixels. For each APl, a CV map denoted as Cl was constructed 
using Equation (8): 

Cl
(
rx, ry

)
=

σ[APl(x, y)
⃒
⃒(x, y) ∈ R2,APl(x, y) ∕= NaN

]

E[APl(x, y)
⃒
⃒(x, y) ∈ R2,APl(x, y) ∕= NaN

] (8) 

where σ[•] denotes the standard deviation. Using CV values as a 
criterion for a good ROI reduces the influence of the target-to-camera 
distance because σ[APl(x, y) ] and E[APl(x, y) ] are reduced by the same 
proportion as the distance increases. Then, an averaged CV map, 
denoted as C, was obtained by time-averaging all the CV maps using 
Equation (9): 

Fig. 10. Overview of the lab-scale test: (a) experimental setup of a four-story shear building model and (b) view from the vision camera.  

Fig. 11. Constructed translation, active-pixel, and inactive-pixel maps using the 1st and 252nd frames: (a) cropped FOV, (b) overlapped feature matching image 
between the 1st and 252nd frames, (c) 252nd translation map (T252), and (d) overlapped map between the 252nd active-pixel and inactive-pixel maps (A252 

and B252). 
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C(x, y) =
1
u
∑u

l=1
Cl(x, y). (9) 

The next step is to construct an averaged FD map denoted as F. First, 
active-pixel matrices (Ql(l = 1,⋯u)) are constructed for u selected key- 
frames by converting all non-NaN entries of active-translation matrices 
(APl(l = 1,⋯u)) to 1 as follows: 

Ql(x, y) =
{

1if APl(x, y) ∕= NaN
NaNotherwise , l = 1,⋯u. (10) 

Ql indicates the position of active pixels in a key-frame and is used to 
calculate the matched FD because the translation amplitude information 
is replaced by 1. FD maps (Fl(l = 1, ⋯u)) are constructed by spatial 
average filtering Ql(l = 1,⋯u): 

Fl
(
rx, ry

)
= E

[
Ql(x, y)

⃒
⃒(x, y) ∈ R2,Ql(x, y) ∕= NaN

]
, l = 1,⋯u. (11) 

Finally, F is obtained by time averaging all the FD maps: 

F(x, y) =
1
u

∑u

l=1
Fl(x, y). (12)  

2.2.2. Smallest-CV cluster selection using GMM-based clustering 
In Section 2.2.2, the GMM technique is applied to create CV clusters 

in C and to select the smallest-CV cluster among them. Fig. 8 illustrates 
the construction process of the GMM-based clustered map. The first step 
is to generate a histogram of all the components in C as shown in Fig. 8 
(a). Assuming that the CV values of natural targets follow a Gaussian 
distribution, the GMM is applied to fit the histogram data to cluster CV 
values using Equation (13) (Fig. 8(b)): 

p(cv) =
∑K

k=1
πkN

(

cv|μk,
∑

k

)

, (13) 

where K is the number of Gaussian components determined using the 
Bayesian information criterion [29]. μk and 

∑
k denote the mean and 

covariance matrices of the kth Gaussian component, respectively. 
πk(k = 1,⋯,K) are the coefficients of the GMM, which satisfy 0 ≤ πk ≤ 1 
and 

∑K
k=1πk = 1. The values of μk, 

∑
k, and πk can be automatically 

determined using the expectation maximization (EM) algorithm [30]. 
The GMM clustering divides various CV values into k clusters, and the 
cluster with the smallest mean value is selected (Fig. 8(b)). Note that 
every part of a natural target may have different CV values and that 
different targets may have similar CV values. This indicates that the 
selected cluster may correspond to different parts of different targets and 
may be spatially spread out within C. 

Fig. 12. Motion index calculation results: (a) active- and inactive-pixel numbers, (b) normalized active- and inactive-pixel numbers, (c) calculated motion index, and 
(d) reference displacement. 
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2.2.3. Highest-FD cluster selection for optimum ROI using DBSCAN-based 
clustering 

When the selected smallest-CV cluster area of C is separated into 
pieces, the cluster was further clustered using its FD, and the cluster with 
the highest FD was selected as the optimum ROI. The selected cluster 
with the smallest mean CV value may include spatially different FOV 
areas, as shown in Fig. 8(b). Therefore, DBSCAN [31] was applied to the 
selected smallest-CV cluster of C to construct a spatially clustered map 
(S) as shown in Fig. 9(a). All the clusters of S have a similar CV, and the 
FDs of S are then compared for the selection of the optimum ROI. First, 
all the entries of S are converted to 1, except for the NaN values, using 
Equation (14): 

S(x, y) = 1for∀S(x, y) ∕= NaN (14) 

Then, a spatially clustered FD map (SF) is constructed by multiplying 
each entity of S and the corresponding entity of F using element-wise 
multiplication called the Hadamard product [32] as shown in Fig. 9(b): 

SF = S◦F (15) 

where ◦ is the Hadamard product operator. To select the optimum 
ROI, the mean values of all the clusters in SF were compared, and the 
cluster with the highest mean value of FD was selected as the optimum 
ROI, as shown in Fig. 9(b). Note that, as an ROI should have a rectan
gular shape, the minimum-bounding rectangle of the selected cluster is 
set as the boundary of the optimum ROI. 

3. Lab-scale test on a four-story shear building model 

Fig. 10 shows the overall configuration of the lab-scale test con
ducted to examine the performance of the proposed ROI selection 
technique. A four-story shear building model was used as the test 
structure and placed on an ELECTRO-SEIS APS 400 vibration exciter. An 

Insta360 Pro 2 vision camera and EpiSensor ES-U2 uniaxial force bal
ance accelerometer were mounted on top of the building model, as 
shown in Fig. 10(a). Note that the acceleration data from the acceler
ometer were not used in the proposed ROI selection technique but were 
used for displacement estimation using the existing technique [24]. The 
reference displacement was measured using an Optex CD5-W500 laser 
triangulation sensor with a resolution of 10 μm. The acceleration and 
reference displacement were digitized and recorded at a sampling rate of 
100 Hz using a National Instrument USB-6366 data acquisition system. 
The vision camera recorded a series of images at a sampling rate of 
29.97 Hz with an image size of 2880 × 3840 pixels. To simulate seismic 
events, three different signals were applied to the vibration exciter to 
shake the building model in the horizontal direction: (1) a 0.5 Hz si
nusoidal signal, (2) a multitone signal having a frequency bandwidth of 
0.5–2.5 Hz with a frequency step of 0.5 Hz, and (3) a pseudo-static 
signal. 

3.1. Stage 1: Selection of key-frames with large target structural 
movement 

Vision measurements under 0.5 Hz sinusoidal signal excitation were 
used for the step-by-step verification of the proposed technique. Fig. 12 
shows the constructed translation, active-pixel, and inactive-pixel maps 
using the 1st and 252nd frames. The FOV was cropped with a size of 
1687 × 285 pixels so that undesired features, such as testing equipment 
and tents in Fig. 10(b), do not interfere with the accuracy (Fig. 11(a)). 
Fig. 11(b) shows an overlapped feature-matching image between the 1st 
and 252nd. Here, red circles and green crosses represent matched 
feature points from the 1st and 252nd frames, respectively. The yellow 
lines represent properly matched points, and the white dotted lines 
correspond to extremely mismatched features that induce significantly 
large translations as outliers. These outliers were removed via the 

Fig. 13. GMM-based CV clustering under 0.5 Hz sinusoidal signal excitation: (a) cropped FOV, (b) CV map (C), (c) GMM-based clustered CV map, (d) histogram of 
clustered CV map, and (e) selected smallest-CV cluster. 
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Fig. 14. DBSCAN-based FD clustering under 0.5 Hz sinusoidal signal excitation: (a) cropped FOV, (b) FD map (F), (c) spatially clustered map (S), (d) spatially 
clustered FD map (SF), and (e) selected highest-FD cluster with the location of the optimum ROI. 

Fig. 15. Monotonic relationship between motion index and reference under: (a) multi-tone and (b) pseudo-static base excitations.  
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Weibull distribution, as they exhibited different colors in the translation 
map and adversely affected further processing. Fig. 11(c) shows the 
252nd translation map (T252), and natural targets have different colors 
depending on their distances, without the color representing an 
extremely large translation. Note that the construction of the translation 
map required a moving mask. If the mask size is too small, the trans
lation map becomes sparse making later clustering difficulty. On the 
other hand, if the mask size is too large, different natural targets tend to 
be merged, so its size was manually set to 51 × 51. Fig. 11(d) shows the 
overlapped map between the active pixel map (A252) and inactive pixel 
map (B252). The valid elements (not NaN) of A252 correspond to the 
natural targets close to the building model, whereas the valid elements 
of B252 correspond to the natural targets at a relatively large distance 
from the target structure. 

By repeating the active-pixel and inactive-pixel counting process 
described in Section 2.1.2, the numbers of active and inactive pixels 
were counted for all the frames, as shown in Fig. 12(a). Fig. 12(b) shows 
the normalized active and inactive pixel numbers (a and b, respectively). 
Then, the motion index (η) was calculated, as shown in Fig. 12(c), which 
was compared with the reference displacement (Fig. 12(d)). Here, the 
green shade area shows that the selected keyframes correspond to large 
values of reference displacement. A large η corresponds to large struc
tural movement, indicating that η can be used to select key frames 
captured with large structural movements. In this study, 10 frames 
corresponding to the largest 10 motion indices were selected, as shown 
in Fig. 12(c). 

3.2. Stage 2: Frame area clustering for the optimum ROI selection 

3.2.1. Smallest-CV cluster selection using GMM-based clustering 
Fig. 13 shows the GMM-based frame area clustering under 0.5 Hz 

sinusoidal signal excitation. The natural targets had various CV values in 
the CV map (C), as shown in Fig. 13(b). The CV values of the outdoor 
units of air conditioners in Fig. 13(a) are smaller than those of the other 
areas, indicating that air conditioners have better feature quality than 
the others. Various CV values in C were clustered using the GMM with 
the EM algorithm [30] as shown in Fig. 13(c). Four clusters were ob
tained, and the mean CV values were 0.1, 0.36, 0.65, and 1.55 for 
Clusters 1–4, respectively. The histogram of clustered C is shown in 
Fig. 13(d), where Cluster 1 has the smallest CV mean value. Fig. 13(e) 
shows the selected smallest-CV cluster (i.e., Cluster 1). Note that the 
cluster was spatially separated into several different mapped areas in the 
cropped FOV. 

3.2.2. Highest-FD cluster selection for optimum ROI using DBSCAN-based 
clustering 

Fig. 14 shows the DBSCAN-based feature clustering under 0.5 Hz 
sinusoidal signal excitation. The FD map (F) based on the key-frames 
selected in Section 3.2 is shown in Fig. 14(b). Denser feature points 
were detected from the outdoor units of air conditioners. In the next 
step, the DBSCAN algorithm was applied to the smallest-CV cluster 
selected in Section 3.2.1 to construct a spatially clustered map (S), as 
shown in Fig. 14(c). Clusters 1, 2, and 3 were outdoor units with 
different air conditioners. The other areas were clustered into Cluster 4. 
A spatially clustered FD map (SF) is constructed, as shown in Fig. 14(d). 
The average FDs of Clusters 1 and 2 were higher than those of the other 
two clusters. The mean FD values were calculated as 7.09, 6.85, 5.29, 
and 2.52 for Clusters 1–4, respectively. Considering that Cluster 1 had 
the highest mean FD value, the minimum-bounding rectangle of Cluster 
1 was selected as the optimum ROI, as shown in Fig. 14(e). 

The proposed technique selects only a few key-frames (Stage 1) from 
the recorded video and then applies the clustering algorithms (Stage 2) 
to these selected key-frames instead of all the frames in the recorded 
video. A total of 1500 frames were obtained during 50-second video 
recording of the experiment with a frame per second (FPS) of 30. The 
proposed technique used only 10 selected key-frames, and the optimum 
ROI selection took about 5 min using a personal computer equipped with 
Intel i7-6700 3.4 GHz CPU and 8 GB RAM. If all 1500 frames were used, 
the optimum ROI selection could have taken over 750 min. 

3.3. Results of stages 1 and 2 under multi-tone and pseudo-static base 
excitations 

Fig. 15 shows the calculated η and reference displacement under 
multi-tone and pseudo-static excitations. The figure shows that η is 
proportional to the amplitude of movement of the target structure not 
only in multi-tone excitation, where various frequencies are mixed, but 
also in pseudo-static excitation with extremely low-frequency 
displacement only. Consequently, the proposed technique effectively 
chooses appropriate key-frames even though a target structure has low- 
frequency vibration only, which is one of the most common types of 
dynamic behavior of typical civil structures [33]. Fig. 16 shows the 
optimum ROIs selected under multi-tone and pseudo-static signal exci
tations. The proposed technique obtained consistent results under 
different structural motions, and the selected optimum ROIs were 
similar to that under 0.5 Hz sinusoidal signal excitation. 

Fig. 16. Selected highest-FD cluster with the location results of the optimum ROI under: (a) multi-tone and (b) pseudo-static base excitations.  
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Fig. 17. Displacement of a four-story shear building model estimated using the optimum ROI and other four ROIs: (a) Cropped FOV and selected multiple ROIs, (b) 
RMSEs of the displacements and translations estimated using different ROIs, and (c)–(e) displacements estimated using different ROIs under 0.5 Hz sinusoidal, multi- 
tone, and pseudo-static excitations. 
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3.4. Displacement estimation results 

Fig. 17 compares the displacement estimated by one of the 
displacement estimation techniques [24] using the optimum ROI auto
matically selected by the proposed technique and four other ROIs. To 
confirm the results of the proposed technique step-by-step in the lab- 
scale test, the video images captured by the vision camera were crop
ped, and the cropped FOV with a size of 1687 × 285 pixels is shown in 
Fig. 17(a). Although ROI 1 and 2 were intuitively selected by the human 
eye, ROI 3 had the second highest FD in the spatially clustered FD map 
(SF), and ROI 4 contained the cluster with the second smallest mean CV 
in the CV map (C). Fig. 17 (b) shows that the displacements estimated 
using the optimum ROI had the smallest root mean square errors 
(RMSEs) compared with those estimated using other ROIs. All ROIs, 
except ROI 4, were included in the smallest-CV cluster. Considering that 
CV is defined as the ratio of standard deviation of translation (σ) to the 
mean of translation (μ) (Equation (8)), the clusters within smaller CVs 
tend to be close to the camera than these with larger CVs. Since ROI 4 is 
farther away (approximately 65 m) from the camera than that 
(approximately 15 m) of the other ROIs, the largest displacement esti
mation error occurred when the ROI 4 was used. The other four ROIs 
showed similar results due to their similar distances to the camera. 
However, the best displacement estimation performance was obtained 

using the optimum ROI, because the number of the detected feature 
points within the optimum ROI was largest as shown in Fig. 14(d). Using 
the optimum ROI, the proposed technique achieved translation errors in 
the range of [0.11 pixels, 0.15 pixels] and displacement errors in the 
range of [ 0.91 mm, 1.10 mm]. Note that here displacement errors were 
relative to the reference displacements measured using a laser triangu
lation sensor (LTS), but the translation errors were relative to the 
translations calculated by dividing the reference displacements by the 
scale factor. The estimated displacement results are compared in Fig. 17 
(c), (d), and (e) to demonstrate the superiority of the displacement 
estimated using the optimum ROI. The RMSE reductions achieved by the 
optimum ROI are compared with those of the other four ROIs in Table 1, 
and up to 70% of the errors were reduced. 

4. Field test 

Fig. 18 shows an overview of the field test performed on a pedestrian 
bridge. The bridge shown in Fig. 18(a) is located in Daejeon, Korea, and 
has a length of 45 m and a width of 8 m. A vision camera and uniaxial 
force-balance accelerometer identical to those used in the lab-scale test 
were installed at approximately 1/4 of the span length of the bridge, as 
shown in Fig. 18(b). A Polytec RSV-150 laser Doppler vibrometer was 
installed at a stationary location under the bridge to measure the 
reference displacement. Fig. 18(c) shows the first frame of vision mea
surement. The pedestrian bridge was excited by (1) four people jumping 
near the measurement point and (2) 16 people walking slowly across the 
bridge. 

To validate the superiority of the optimum ROI selected using the 
proposed technique further, vision-based displacements were estimated 
using the optimum ROI and three other ROIs, and the displacement 
estimation results were compared with the reference displacement, as 
shown in Fig. 19 and Table 2. The locations of the four ROIs are shown in 
Fig. 19(a). Similar to the lab-scale test, ROI 1 was intuitively selected by 
the naked eye, and ROI 2 corresponded to the cluster with the second- 

Fig. 18. Overview of the field test: (a) pedestrian steel box girder bridge, (b) sensor setup on the bridge, and (c) view from the vision camera.  

Table 1 
RMSE reduction achieved by the optimum ROI compared with the other four 
ROIs in the four-story shear building model test.  

Excitations RMSE reduction (%) compared with different ROIs 

ROI 1 ROI 2 ROI 3 ROI 4 

0.5 Hz sine  29.03  24.66 12  69.1 
Multi-tone  43.48  41.29 38.51  73.31 
Pseudo-static  20.59  10.74 8.47  68.24 
Average  31.03  25.56 19.66  70.22  
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highest FD in SFjumping. As the other clusters (i.e., Cluster 2 in SFwalking 

and Cluster 3 in SFjumping) were too small to act as effective ROIs, a 
distant target from a nearby building was selected as ROI 3. In both 
cases, the optimum ROI reduced the RMSEs of the estimated displace
ments by more than 70% compared with ROI 3. Compared with ROI 1 
and 2, the optimum ROI shows 29.26% and 12.27% reductions in RMSE, 
respectively, although the three ROIs have similar CV values. 

Fig. 20(a) and (b) depict the numbers of active and inactive pixels 
before and after min–max normalization, respectively. As several 
feature points are detected as distant objects from the bridge, inactive 
pixels are significantly more abundant than active pixels, as shown in 

Fig. 20(a). This issue was addressed as shown in Fig. 20(b) after the 
min–max normalization process for calculating the motion index (η). 
The calculated η was then compared with the reference displacement 
(Fig. 20(c)). The key-frame selection results in the figure demonstrate 
that frames with a large movement of the target structure were suc
cessfully chosen by the proposed technique. 

Fig. 21(b) and (c) show the spatially clustered FD map results for the 
walking and jumping cases, respectively. In both cases, the consistency 
of the proposed technique was confirmed by overlapping the selected 
optimum ROIs, as shown in Fig. 21(a). In Fig. 21(c), the second-highest 
cluster indicates the position of ROI 2 in Fig. 19(a), and it shows the 
second-best displacement estimation result, as shown in Fig. 19(b). 

5. Conclusion 

This paper proposed an automated ROI selection technique for 
computer-vision-based structural displacement estimation. The pro
posed technique first selected several key-frames, and CV and FD maps 
were constructed using the selected key-frames. These two maps were 
clustered using unsupervised GMM and DBSCAN clustering algorithms, 
and the cluster with the smallest CV value and the highest FD value was 
selected as the best ROI. The performance of the proposed technique was 

Fig. 19. Estimation results of pedestrian bridge displacement: (a) FOV and selected multiple ROIs, (b) RMSEs of the displacements estimated using different ROIs, (c) 
and (d) displacements estimated using different ROIs in walking and jumping cases. 

Table 2 
RMSE reduction achieved by using the optimum ROI compared with other ROIs 
in the pedestrian bridge field test.  

Excitations RMSE reduction (%) compared with different ROIs 

ROI 1 ROI 2 ROI 3 

Walking  30.85  22.62  78.55 
Jumping  27.66  1.92  70.35 
Average  29.26  12.27  74.45  
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validated through a laboratory test on a four-story shear building and a 
field test on a pedestrian bridge. The selected optimum ROIs enabled the 
best displacement estimation performance compared with other intui
tively selected ROIs, and the overall RMSEs of displacements estimated 
using the optimum ROIs were less than 2 mm in both tests, indicating 
that the proposed technique successfully selected a high-reliability ROI. 
However, the proposed technique requires manual determination of the 
mask size and assumes that all natural targets within the FOV are sta
tionary. Future works are warranted to optimize the mask size and 
consider non-stationary target with the FOV. We also plan to improve 
the applicability and efficiency of the proposed technique further in the 
future. As the optimum ROI cannot be updated in this study after a short- 

time vision measurement is completed, the optimum ROI updating 
technique is being further studied for time-variant ROI detection. In 
addition, a new formulation of the vision camera position is explored to 
incorporate the rotation of the camera in the proposed technique. 
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[15] D.V. Jáuregui, K.R. White, C.B. Woodward, K.R. Leitch, Noncontact 
photogrammetric measurement of vertical bridge deflection, J. Bridg. Eng. 8 
(2003) 212–222. 

[16] T. Khuc, F.N. Catbas, Computer vision-based displacement and vibration 
monitoring without using physical target on structures, Struct. Infrastruct. Eng. 13 
(2017) 505–516. 

[17] L. Luo, M.Q. Feng, Edge-enhanced matching for gradient-based computer vision 
displacement measurement, Comput. Aided Civ. Inf. Eng. 33 (2018) 1019–1040. 

[18] P.L. Reu, D.P. Rohe, L.D. Jacobs, Comparison of DIC and LDV for practical 
vibration and modal measurements, Mech. Syst. Sig. Process. 86 (2017) 2–16. 

[19] D. Diamond, P. Heyns, A. Oberholster, Accuracy evaluation of sub-pixel structural 
vibration measurements through optical flow analysis of a video sequence, 
Measurement 95 (2017) 166–172. 

[20] S. Bhowmick, S. Nagarajaiah, Spatiotemporal compressive sensing of full-field 
Lagrangian continuous displacement response from optical flow of edge: 
Identification of full-field dynamic modes, Mech. Syst. Sig. Process. 164 (2022), 
108232. 

[21] C.-Z. Dong, O. Celik, F.N. Catbas, Marker-free monitoring of the grandstand 
structures and modal identification using computer vision methods, Struct. Health 
Monit. 18 (2019) 1491–1509. 

[22] J.J. Lee, M. Shinozuka, A vision-based system for remote sensing of bridge 
displacement, NDT and E Int. 39 (2006) 425–431. 

[23] S. Yu, J. Zhang, Fast bridge deflection monitoring through an improved feature 
tracing algorithm, Comput. Aided Civ. Inf. Eng. 35 (2020) 292–302. 

[24] Z. Ma, J. Choi, H. Sohn, Real-time structural displacement estimation by fusing 
asynchronous acceleration and computer vision measurements, Comput. Aided 
Civ. Inf. Eng. 37 (2022) 688–703. 

[25] Z. Ma, J. Choi, P. Liu, H. Sohn, Structural displacement estimation by fusing vision 
camera and accelerometer using hybrid computer vision algorithm and adaptive 
multi-rate Kalman filter, Autom. Constr. 140 (2022), 104338. 

[26] H. Bay, T. Tuytelaars, L.V. Gool, Surf: Speeded up robust features, in: European 
Conference on Computer Vision, Springer, 2006, pp. 404–417. 

[27] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. 
Comput. Vis. 60 (2004) 91–110. 

[28] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: an efficient alternative to SIFT 
or SURF, in: 2011 International Conference on Computer Vision, IEEE, 2011, pp. 
2564–2571. 

[29] G. Schwarz, Estimating the dimension of a model, Ann. Stat. (1978) 461–464. 
[30] C.M. Bishop, N.M. Nasrabadi, Pattern Recognition and Machine Learning, Springer, 

2006. 
[31] D. Birant, A. Kut, ST-DBSCAN: an algorithm for clustering spatial–temporal data, 

Data Knowl. Eng. 60 (2007) 208–221. 
[32] R.A. Horn, The hadamard product, Proc. Symp. Appl. Math. (1990) 87–169. 
[33] J. Lovse, W. Teskey, G. Lachapelle, M. Cannon, Dynamic deformation monitoring 

of tall structure using GPS technology, J. Surv. Eng. 121 (1995) 35–40. 

J. Choi et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0263-2241(23)00722-4/h0005
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0005
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0010
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0010
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0010
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0015
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0015
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0015
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0020
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0020
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0020
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0025
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0025
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0025
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0030
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0030
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0035
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0035
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0035
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0040
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0040
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0045
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0045
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0045
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0050
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0050
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0055
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0055
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0055
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0060
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0060
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0060
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0065
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0065
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0070
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0070
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0075
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0075
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0075
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0080
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0080
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0080
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0085
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0085
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0090
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0090
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0095
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0095
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0095
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0100
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0100
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0100
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0100
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0105
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0105
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0105
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0110
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0110
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0115
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0115
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0120
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0120
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0120
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0125
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0125
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0125
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0135
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0135
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0145
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0150
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0150
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0155
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0155
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0160
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0165
http://refhub.elsevier.com/S0263-2241(23)00722-4/h0165

	Automated region-of-interest selection for computer-vision-based displacement estimation of civil structures
	1 Introduction
	2 Development of the proposed automated ROI selection technique
	2.1 Stage 1: Selection of key-frames with large target structural movement
	2.1.1 Translation map construction
	2.1.2 Active and inactive pixel counting
	2.1.3 Motion index calculation

	2.2 Stage 2: Frame area clustering for the optimum ROI selection
	2.2.1 CV and FD map construction using a moving mask
	2.2.2 Smallest-CV cluster selection using GMM-based clustering
	2.2.3 Highest-FD cluster selection for optimum ROI using DBSCAN-based clustering


	3 Lab-scale test on a four-story shear building model
	3.1 Stage 1: Selection of key-frames with large target structural movement
	3.2 Stage 2: Frame area clustering for the optimum ROI selection
	3.2.1 Smallest-CV cluster selection using GMM-based clustering
	3.2.2 Highest-FD cluster selection for optimum ROI using DBSCAN-based clustering

	3.3 Results of stages 1 and 2 under multi-tone and pseudo-static base excitations
	3.4 Displacement estimation results

	4 Field test
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


