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It is important to assess, monitor, and control civil infrastructure displacements, and extensive work has been
done to develop structural displacement sensing techniques. This paper presents a comprehensive review of
structural displacement sensing techniques, with particular focus on those for civil infrastructures. The working
principles of structural displacement sensing techniques using thirteen different sensors are first reviewed, and the
advantages and disadvantages of each sensor are briefly discussed. The disadvantages of single-mode sensor-based

structural displacement estimation have been partially addressed by the use of multi-mode sensors. Thus, the
studies on multi-mode sensor-based structural displacement estimation are reviewed. After that, field applications
of these techniques to building structures, bridge structures, and other structures are briefly reviewed. The
remaining challenges for the real application of these techniques are summarized, and future research directions

are provided.

1. Introduction

In the field of civil engineering, structural failures can lead to cata-
strophic results. Thus, it is important to continuously monitor the health
of a structure to prevent such failures. Structural health monitoring
(SHM) aims to monitor, analyze, and identify various types of loads and
structural responses of a target structure during its service life, thus
enabling the assessment of the structure’s performance and safety status.
The displacement response plays a vital role in structural health moni-
toring because it assists in understanding the global behavior of a
structure and evaluating its structural safety. It can be used in structural
control and in disaster prevention and mitigation. The displacement has
been directly used as a safety index in structural design codes in many
countries such as the USA (AASHTO, 2017), South Korea (MLTM. Korea,
2010), China (MOHURD., 2020), and the EU (CEN. Eurocode 1, 2003). In
addition, the displacement response has been used for bridge loading
tests (Lee et al., 2006; Vicente et al., 2015; Dong et al., 2020; Sun et al.,
2021; Hester et al., 2017), structural damage detection (Feng and Feng,
2016), modal identification (Feng and Feng, 2017; Kim et al., 2013;
Bhowmick and Nagarajaiah, 2020; Jiao et al., 2021), and finite element
model updating (Feng and Feng, 2015; Civera et al., 2020). Therefore, it
is essential to monitor the structural displacement response.

Many factors should be considered when estimating the structural
displacement. The most important of these is the performance of the
measurement method, which should have a sufficient frequency range
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and measurement accuracy, as well as the ability to measure the dis-
placements in multiple directions and at multiple points. The second
thing that should be considered is the sensor installation location. A
sensor can be installed at displacement-measurement locations for
contact-type displacement measurement or installed at other locations
for noncontact displacement measurement. Note that the sensor instal-
lation location should be selected based on the purpose of the displace-
ment measurement, i.e., whether it is used in a short-term survey or long-
term continuous monitoring. In addition, the data transmission and
power supply, and the robustness to time-varying operational and envi-
ronmental conditions such as extreme weather conditions, occlusion, or
illumination variation should be considered, especially for long-term
continuous displacement monitoring.

Many techniques have been developed for structural displacement
measurement, and the sensors used in these techniques (Fig. 1) can be
divided into the (1) contact and (2) noncontact types, depending on
whether access to the displacement measurement point is required or
not. Linear variable differential transformers (LVDTs) (Nassif et al., 2005;
Santhosh and Roy, 2017), accelerometers (Lee et al., 2010; Gomez et al.,
2018; Park et al., 2013a; Gindy et al., 2008; Wang et al., 2011), in-
clinometers (Hou et al., 2005; Zhang et al., 2017a), strain sensors (Shin
etal., 2012; Zhang et al., 2017b, 2018a, 2021; Wang et al., 2014; Kim and
Cho, 2004; Shen et al., 2010; Xia et al., 2014; Sigurdardottir et al., 2017;
Chen etal., 2017a), connecting pipe systems (Liu et al., 2015; Zhou et al.,
2021), optical fiber sensors (Lee et al., 2022a; Bonopera et al., 2019;
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Fig. 1. Sensors used for structural displacement measurement.

Rodrigues et al., 2011; Chan et al., 2009), and global navigation satellite
systems (GNSS) (Xiong et al., 2022; Niu et al., 2021; Tamura et al., 2002;
Nakamura, 2000) are typical contact-type sensors. An LVDT can measure
displacement with high accuracy, but the requirement of an additional
scaffold for the installation makes it less attractive in real applications.
Accelerometers are the most widely used type for displacement estima-
tion, but acceleration-based displacement either suffers from a large,
low-frequency drift or loses important low-frequency structural
displacement information. Although both strain sensors and in-
clinometers can estimate both low- and high-frequency displacements,
multiple sensors are required even for displacement estimation at a single
point. A connecting pipe system can simultaneously estimate the struc-
tural displacements at multiple locations, but can only estimate vertical
displacements. Optical fiber sensors can only measure the relative
displacement between two points of a target structure. Currently, a GNSS
is commonly adopted in the SHM systems of many large-scale bridges and
building structures for long-term displacement monitoring, but it typi-
cally has a low sampling rate of up to 20 Hz and low accuracy of
approximately 7-10 mm. Moreover, it cannot work in a GNSS-denied
environment.

All the above-mentioned sensors must be placed at a displacement
measurement point of a target structure, but access to such displacement
measurement points may not be available in some applications. Efforts
have been made to develop various noncontact displacement estimation
techniques using vision cameras (Feng et al., 2015; Luo and Feng, 2018;
Dong et al., 2019; Yoon et al., 2018; Shang and Shen, 2018; Chen et al.,
2017b; Khuc and Catbas, 2017a; Yu and Zhang, 2020; Luan et al., 2021;
Xu et al., 2021; Zhu et al., 2021; Jeong and Jo, 2022; Lee and Shinozuka,
2006), radars (Zhang et al., 2020; Gentile and Bernardini, 2008, 2010;
Owerko and Kuras, 2019; Guan et al., 2017, 2018; Rodrigues et al., 2021;
Guo et al., 2021), laser Doppler vibrometers (LDV) (Reu et al., 2017;
Toyoshima et al., 1994), laser triangulation sensors (LTS) (Zhuojiang
et al., 2021), light detection and ranging (LiDAR) (Blais, 2004; Lee et al.,
2019; Lee and Kim, 2022; Park et al., 2007), level (Corsetti et al., 2018;
Zhou et al., 2020a), and total stations (TS) (Zhou et al., 2020a; Yu et al.,
2017; Psimoulis and Stiros, 2007; Stiros and Psimoulis, 2012). However,
vision-based techniques have a high computational cost and their accu-
racies are highly sensitive to illumination conditions. An LDV requires a
reflector installed at the displacement estimation point to ensure stable
signal reflection, and laser beams with high intensity are needed for
long-distance measurements, which pose a health risk to humans. An LTS
also requires a reflector and is only suitable for short-distance measure-
ment. LiDAR is advantageous for full-field structural displacement esti-
mation, but it has limited accuracy. Radar requires the manual
identification of the position of the radar-detected target on the target
structure, and manual estimation of the conversion factor is required to
convert the line-of-sight (LOS) displacement into the structural
displacement in the actual direction of vibration. In addition, large
structural  displacement measurements may suffer from a
phase-wrapping issue, especially when using millimeter-wave radars,
resulting in inaccurate displacement estimation. Level and TS are not

suitable for high-sampling-rate or long-term displacement monitoring
and are often used as reference sensors to evaluate the displacement
estimation performances of other sensors.

Each of these structural displacement estimation techniques has its
advantages and disadvantages. Thus, another trend in structural
displacement estimation is to combine data from different sensors for
improved displacement estimation. Most commonly, an accelerometer is
combined with other sensors such as strain sensors (Zhu et al., 2020;
Zhou et al., 2022), vision cameras (Park et al., 2018; Chang and Xiao,
2010; Xu et al., 2019), or a GNSS (Xu et al., 2017; Koo et al., 2017). A
general framework for estimating the displacement by combining an
accelerometer with other sensors is given in Fig. 2. Acceleration and
initial displacement measurements from other sensors are combined
using either a Kalman or finite impulse response (FIR) filter to obtain the
final displacement with improved accuracy and/or an increased sam-
pling rate. In addition, sensor fusion has been explored, including ap-
plications that combined strain sensors and inclinometers (Sun et al.,
2020), an LDV and LiDAR (Kim and Sohn, 2017; Kim et al., 2016a), a
vision camera and an LDV (Nasimi and Moreu, 2021a, 2021b), and a
vision camera and LiDAR (Lee et al., 2022b).

This paper aims to present a comprehensive review of structural
displacement estimation techniques, with the main focus on civil in-
frastructures. The remaining challenges for the real applications of these
techniques are discussed, along with the future outlook. Although reviews
have previously been performed on structural displacement measurement
methods, they either focused on a particular class of displacement mea-
surement techniques (e.g., GNSS-based techniques (Wang et al., 2021;
Shen et al., 2019; Yu et al., 2020), vision-based techniques (Feng and
Feng, 2018; Xu and Brownjohn, 2018; Zhuang et al., 2022), or radar-based
techniques (Monserrat et al., 2014)), or they focused on the general area
of SHM (Wu and Jahanshahi, 2020; Dong and Catbas, 2021; Spencer et al.,
2019), while only briefly reviewing structural displacement measurement
as an important sub-topic. The remainder of this paper is organized as
follows. Structural displacement estimation techniques using single-mode
sensors and multi-mode sensors are reviewed in sections 2 and 3,
respectively. Then, domain-specific applications are reviewed in section 4,
followed by a discussion of considerations for structural displacement
estimation and the remaining challenges. Finally, section 5 concludes the
paper with a summary and future outlook.

2. Structural displacement measurement techniques using
single-mode sensor

Depending on whether access to the displacement measurement point
is required or not, the techniques can be divided into two types: (1)
contact and (2) noncontact types. Table 1 compares all the sensors for
structural displacement estimation discussed in this section in terms of
(1) displacement-measurement accuracy, (2) sampling rate, (3) require-
ment of a stationary installation location, (4) displacement-measurement
direction, (5) ability to perform multi-point displacement estimation, (6)
potential for long-term displacement monitoring, and (7) computation
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Fig. 2. General framework of structural displacement estimation fusing accelerometer with other sensors.

efficiency. This section discusses more details, including the working
principles, advantages, and disadvantages of these sensors.

2.1. Contact-type measurement

2.1.1. LVDT

An LVDT is commonly used for displacement measurement in the
field of civil engineering (Nassif et al., 2005; Santhosh and Roy, 2017). It
consists of a cylindrical form with a movable soft iron core, as shown in
Fig. 3. A primary winding (P) is connected to an AC voltage source, and
two secondary windings (S; and Sg) are wound on the cylindrical form.
Then, AC voltages are induced in S; and S» (Es; and Eg,, respectively) by
the alternating magnetic field produced by the AC voltage in P. For
bridge displacement measurement, the LDVT is fixed on a stationary
scaffold or solid support structure, and the movable soft iron core is in
direct contact with the target structure. The core movement (i.e., bridge
displacement) causes variations in Eg; and Es;, where the difference
between them (E, = Eg; — Es») is proportional to the bridge displace-
ment (Santhosh and Roy, 2012). Therefore, the bridge displacement can
be obtained by measuring E,. An LVDT is one of the most commonly used
devices for measuring displacement in the field of civil engineering
(Nassif et al., 2005; Santhosh and Roy, 2017). Although LVDTs have good
measurement accuracy, their installation is cumbersome and difficult,
which limits their applications in the long-term monitoring of large-scale
structures. In addition, the performance of an LVDT also degrades in
practical applications because of unexpected scaffold vibration.

2.1.2. Accelerometer

Acceleration sensors are commonly used for structural displacement
estimation because of their easy installation and low computational cost.
By integrating acceleration measurements twice, the displacement can
easily be estimated based on the physical relationship between the
displacement and acceleration. Nevertheless, unknown initial conditions
(i.e., the initial displacement and velocity) and acceleration measure-
ment noises lead to a large, low-frequency drift in the estimated
displacement. Such a drift can be effectively removed with a high-pass
filter (Lee et al., 2010; Gomez et al., 2018; Park et al., 2013a), but the
filter also suppresses important low-frequency structural displacements
because of the difficulties in distinguishing the actual structural response
in the low-frequency band from the noise. Many techniques such as
state-space (Gindy et al., 2008) and iteration-based techniques (Wang
et al., 2011) have also been developed to recover the low-frequency
structural displacement, but such low-frequency displacements still
cannot be estimated stably.

2.1.3. Inclinometer

Attempts have also been made to estimate structural displacement
using inclinometers (Hou et al., 2005). Assuming that rotations are
measured at multiple points using inclinometers (x = x;,i = 1,---,V), the
rotation distribution at each time step can be fitted using a W-order
polynomial function (W < V —1).

H(XI ) 1 o xYV GO
N : (€Y
Q(XV) 1 ){; GW

The W unknown coefficients (G, ---, Gy) can be estimated using a
least square estimation algorithm. According to the Euler-Bernoulli
beam theory, the rotation—displacement relationship can be expressed as
follows:

du(x)

O(x)= . 2)

Then, the displacement distribution can be integrated from the
rotation distribution as follows:

L
u(x)= / O(x)dx = Gox + G\ x* + - + Gpx"*! 3
0

Note that the integration constant in Equation (3) equals zero because
of the boundary condition of u(0) = 0. With the help of the finite element
model of a target structure, a similar algorithm was proposed by Zhang
et al. (2017a), which considered structural damages. Although the
full-field structural displacement can be estimated, multiple in-
clinometers should be installed along the target structure. In addition,
high-accuracy rotation measurement is still challenging, especially in the
low-frequency band.

2.1.4. Strain sensor

Strain sensors are extensively used for structural displacement
estimation, along with a mode superposition algorithm (Shin et al.,
2012; Zhang et al., 2018a). Assuming that strains are measured at N
points (e (x1), -, €k (xn)) at the kth time step, the vertical displacement
(ux(x4)) of a beam at any desired point (x = x;) can be estimated from
the strain measurements according to the Euler-Bernoulli beam
theory:

() = W) [0() ()] ) e (1) @

c

Solid support
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Fig. 3. Overview of LVDT-based bridge displacement measurement.
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vwhere ¢;(x) and ¢;(x) denote the jth displacement and strain mode
shapes, respectively. y. denotes the vertical distance from the strain
measurement point to the neutral axis. However, the mode superposition
algorithm requires prior knowledge of the mode shapes and neutral axis
location of a target structure, which may not be readily available for many
applications. Efforts have been made to estimate strain-mode shapes
directly from strain measurements and estimate displacement-mode
shapes using double integration (Wang et al., 2014; Zhang et al., 2021).
However, the accurate estimation of strain-mode shapes is difficult in
practice considering the large noise level in field strain measurements.

The need for mode shapes has been eliminated using a curve-fitting
algorithm (Kim and Cho, 2004), conjugate-beam algorithm (Shen
et al., 2010), and virtual-work algorithm (Xia et al., 2014). The working
principle of the curve-fitting algorithm is similar to that of
inclinometer-based displacement estimation. The strain distribution is
first fitted using multiple strain measurements, and then the displace-
ment distribution is estimated using double integration. However, the
algorithm still requires the neutral axis location, and dense strain gauges
are needed to reduce the integration-induced error in the estimated
displacement (Sigurdardottir et al., 2017). The conjugate-beam algo-
rithm can estimate the displacement induced by bending, support set-
tlements, temperature variations (Shen et al., 2010), and even shear
forces (Zhang et al., 2017b; Chen et al., 2017a), but the neutral axis
location is still required and long-gauge FBG strain sensors should be
used, which are rather expensive. Although the virtual-work algorithm
does not require a neutral axis location, it only works for cantilever-type
structures with uniform sections.

2.1.5. Connecting pipe system

A connecting pipe system was proposed to measure the vertical dis-
placements of a bridge at multiple points (Liu et al., 2015; Zhou et al.,
2021) based on the working principle summarized in Fig. 4. After
measuring the pressures at a reference point (Pg) and displacement
measurement point (P;), the vertical distance between the reference and
measurement points (AH;) can be obtained as follows:

Water
Reference point (fixed)
Pressure [ | . Displacement measurement
sensor PR p0|nts

®
r

Pressure sensor
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AH = 6

where p and g denote the water density and gravitational acceleration,
respectively. Considering that the reference point is fixed, the variation
of AH; becomes the displacement at the ith location. Although connecting
pipe systems can simultaneously estimate bridge displacements at mul-
tiple locations, they can only estimate vertical displacements.

2.1.6. Optical-fiber sensor

Fig. 5 shows the overall working principle of optical-fiber sensors
(Ramakrishnan et al., 2016). A light source outputs light through an
optical fiber into the modulation area. The displacement, temperature
variation, etc. applied at the modulation area causes a change in the
optical parameters of the optical signal, such as the intensity, phase, and
spectrum. Then, a modulated light signal is generated and received by
the light detector. Finally, the displacement, temperature variation, etc.
can be estimated by demodulation. Optical-fiber sensors can be
employed in several different ways for structural displacement estima-
tion. Their use is similar to that of an LVDT. One side of the fiber is fixed
on a stationary scaffold or solid support structure, and the other side is in
direct contact with a target structure. The displacement of the structure
will strain the fiber, which is monitored through optical interrogation of
the Bragg wavelength. Optical fiber sensors have also been used for strain
and inclination measurements. Thus, algorithms explained in sections
2.1.3 and 2.1.4 can be used to estimate the displacement based on the
measured strain (Kim and Cho, 2004) or inclination (Chan et al., 2009).
In addition, optical fiber sensors have been integrated with connecting
pipe systems for long-term bridge displacement monitoring (Lee et al.,
2022a; Bonopera et al., 2019; Rodrigues et al., 2011).

2.1.7. GNSS

A GNSS satellite sends an intermittent radio signal to the earth, which
contains the exact time the signal was sent (T;) and the coordinates of the
satellite ((X;, Yi, Z;)). Assuming that M satellites are available and the
transmitted signals are simultaneously received by a GNSS receiver
installed at a target structure at time Tg, the distances between the GNSS
receiver and satellites (D;,i = 1,---,M) can be expressed as follows:

D, = \/(XG XV +Ye—N) 4 Ze—2Z) =c(Te —T)
: %)

Dy = \/(XG —Xu)' + (Y6 — Y/.w)z +(Zo = Zu)" = c(Tg — Tw)

r,l

Pressure sensor

Fig. 4. Overview of bridge displacement estimation using a connecting pipe system.

Displacement, temperature, etc.

-——‘ Optical fiber

T

Modulation area

Fig. 5. Overall working principle of optical fiber sensor.
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where (Xg, Yg,Zg) denote the coordinates of the GNSS receiver, and ¢
denotes the speed of light. With M > 4, the values of (X, Y, Zg) and T¢
are estimated from Equation (7). The variations of (Xg, Ys,Zg) become
the three-dimensional (3D) structural displacements (Kaplan and
Hegarty, 2017).

GNSS-based positioning originally has a meter-level accuracy, which
is insufficient for structural displacement estimation. The displacement-
measurement performance can be enhanced using a real-time kine-
matic (RTK) technique by adopting two GNSS receivers. One receiver
called a base is installed at a stationary location, and the other receiver
called a rover is installed at a target structure. The rover measurement
can be corrected by subtracting the base measurement from the rover
measurement assuming that both the rover and base share a common
environment and clock error (Hofmann-Wellenhof et al., 2012). An
RTK-GNSS has been adopted to measure the displacements of buildings
(Tamura et al., 2002) and suspension bridges (Nakamura, 2000), and
various attempts have also been made to denoise GNSS-based displace-
ments using various signal processing algorithms (Xiong et al., 2022; Niu
et al., 2021). However, GNSS-based displacement measurement has
limited accuracy of up to 5-8 mm and a limited sampling rate of up to 10
Hz. In addition, its performance is greatly degraded by GNSS satellite
signal blockage or multi-pathing error. Moreover, it is not suitable for
GNSS-denied environments such as underwater environments.

2.2. Noncontact measurement

2.2.1. Vision camera

Vision cameras have been widely employed for noncontact bridge
displacement estimation. Fig. 6 shows an overview of vision-based
structural displacement estimation. A vision camera is usually installed
at a stationary location with its lens aimed at a natural or artificial target
at the displacement estimation point (Fig. 6(a)). Then, the target move-
ment is first estimated in pixel units from vision measurements using
template-matching algorithms (Feng et al., 2015; Luo and Feng, 2018),
optical-flow algorithms (Dong et al, 2019; Yoon et al, 2018),
phase-based algorithms (Shang and Shen, 2018; Chen et al., 2017b),
feature-matching algorithms (Khuc and Catbas, 2017a; Yu and Zhang,
2020), or deep-learning algorithms (Luan et al., 2021; Xu et al., 2021;
Zhu et al., 2021; Jeong and Jo, 2022). Then, it is converted into the
displacement in length units using a scale factor, which can be estimated
by identifying the target dimensions in physical units in advance (Lee and
Shinozuka, 2006) (Fig. 6(b)). In addition, attempts have also been made
to reduce the displacement estimation errors induced by camera
ego-motion (Ma et al., 2022a; Yu et al., 2022), environmental tempera-
ture variation (Zhou et al., 2020b), optical-turbulence (Luo et al., 2020),
illumination variation (Yang et al., 2022), etc. However, the following
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limitations still exist. First, the manual measurement of the target di-
mensions for scale-factor estimation may be challenging under field
conditions. Second, the high computational cost of these techniques
hinders the real-time estimation of displacement at a high sampling rate.
Third, securing a stationary location to install the vision camera can be
difficult, especially for long-term continuous monitoring.

The need for a stationary camera installation location has been
eliminated by installing a camera on a target structure (Yu and Zhang,
2020) or drone (Yoon et al., 2018; Weng et al., 2021). For the former, the
structural displacement can be continuously estimated by tracking a
stationary target in the area surrounding the target structure. Except for
this, the displacement estimation procedure is identical to that using a
fixed camera. For the latter, the relative displacement between the
camera and target structure is first estimated using the procedure shown
in Fig. 6(b). Then, the camera vibration (i.e., drone vibration) is esti-
mated by tracking other stationary targets. However, the drone has a
six-degree-of-freedom (6-DOF) vibration, which makes the accurate
estimation of the vibration challenging. In addition, these techniques are
only suitable for short-term structural displacement surveys.

2.2.2. Radar

Fig. 7 shows a flowchart of noncontact structural displacement esti-
mation using a frequency-modulated continuous wave (FMCW) radar. At
the kth time step, the radar transmits a frequency-modulated (FM) signal
(Sr(t)) with a duration of T,

Sp(t) = CHKE) (kAL <t <kAr+T,) ®

where f; and K denote the starting frequency and frequency slope of the
FM signal, respectively. The transmitted signal is reflected by multiple
targets (Q) in the area surrounding the radar, and a mixed signal (Sg(t))
of these reflected signals is obtained,

[ Qo Q
Se(t) =" Sp(t)="_&"Sp(t—Ar") =" 8"Sp(t—2D" / c) 9)
m=1 m=1

m=1

where 5™ and At™ denote the attenuation factor and traveling time of the
mth target, respectively. D™ denote the LOS distance from the radar to the
mth target, and c denotes the speed of light. Next, an intermediate fre-
quency (IF) signal is calculated as follows:

IF([) :Sr(l‘) % S;(l) — Zéme/(wr,urww,); " = — [pm —

Q m m
4zKD" 471;féD 10

=1
Note that both the frequency (w™) and phase (¢™) of the IF signal

include distance information (D™). After that, the Fourier transform is
applied to the IF signal, and peaks in the amplitude spectrum correspond

(a) . SF = Dyl dy (b)  vision measurements (ROI)
=L
" 5 1
\ \ E _ \\'".ET’
™ ROI FOV
s D

Displacement in a length unit (u)

Translation in a pixel unit (d)

e

[}

£

Camera 2
installed at a a

fixed location

Time

Translation

Fig. 6. Overview of structural displacement estimation using a camera installed at a fixed location: (a) sensor setup and (b) overall flowchart.
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Fig. 7. Flowchart of FMCW radar-based structural displacement measurement.

to targets at different distances. Because the radar vibration is very small,
the phase is commonly adopted to estimate the displacement of each
target:

MZI — ﬁl)‘l ¢

4xf,

(o — o) a1

where ¢ and ¢} denote the initial and current phases extracted from the
mth target, respectively. Note that the actual target vibration direction
may differ from the LOS direction, and a direction conversion factor (™)
is included in Equation (11).

Over the last two decades, extensive studies have been conducted on
structural displacement estimation for bridges and building structures
using microwave (Zhang et al., 2020; Gentile and Bernardini, 2008,
2010; Owerko and Kuras, 2019; Guan et al., 2017, 2018) or
millimeter-wave radars (Rodrigues et al., 2021; Guo et al., 2021). In all

these studies, a radar is installed at a stationary location, and the
multi-point displacements of the target structure are estimated as shown
in Fig. 8(a). However, to select a target near the desired displacement
estimation point and then estimate the conversion factor (™) for the
selected target, the locations of all the radar-detected targets on the
target structure should be manually identified, which is cumbersome. In
addition, when the structural displacement exceeds the radar wave-
length, phase wrapping could be a major issue, especially for
millimeter-wave radars. Moreover, securing a stationary installation
location may not be possible, especially for long-term continuous
displacement monitoring. A few attempts have been made to install a
radar on a target structure (Guan et al.,, 2017, 2018), as shown in
Fig. 8(b), to eliminate the need for a stationary installation location.
However, they required the installation of an active transponder at a
stationary location, which would be cumbersome in practice.
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Fig. 8. Sensor setup for radar-based structural displacement estimation: (a) a fixed radar at a stationary location and (b) radar installed on a target structure.
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2.2.3. Laser-based sensor

Laser-based sensors have also been adopted for noncontact structural
displacement estimation. Although various laser-based sensors are
available, they use three different laser ranging algorithms: (1) pulse-
based algorithm, (2) phase-based algorithm, and (3) triangulation algo-
rithm. Fig. 9 briefly shows the working principles of these three algo-
rithms. The pulse-based algorithm uses a laser pulse, and the distance
between the radar and target (D) is estimated from the laser return time
(Fig. 9(a)). The phase-based algorithm uses a sinusoidal laser, and D is
estimated from the phase shift between the transmitted and reflected
lasers (Fig. 9(b)). The triangulation algorithm is quite different from the
previous two algorithms. The transmitted laser is reflected by the target
and detected by an image sensor. D can be estimated from the laser po-
sition in the image sensor (Fig. 9(c)). Note that all three algorithms es-
timate D, and its variation with respective to time becomes the target
displacement.

The first type of laser-based sensor is the LDV (Reu et al., 2017;
Toyoshima et al.,, 1994), which uses the phase-based algorithm. For
displacement measurement, an LDV is installed on the fixed ground and
focused on the target (i.e., the displacement estimation point). Although
the displacement can be estimated with very high accuracy, the following
limitations exist. First, to achieve a stable signal reflection, a reflector
with a retroreflective film should be mounted at the displacement esti-
mation point, and the laser beam should be perpendicular to the reflector
surface. Second, because LDVs are fairly expensive, it may not be possible
to widely utilize them for structural displacement monitoring. Third,
laser beams with high intensity are needed for long-distance measure-
ments, which pose a health risk to humans (Nassif et al., 2005). The
second type of laser-based sensor is an LTS (Zhuojiang et al., 2021),
which uses the triangulation algorithm. The sensor setup for an LTS is the
same as that for an LDV. However, it only has sufficient accuracy when
the distance between the LTS and target is short. Therefore, an LTS is
mainly used in laboratory tests to measure ground-truth displacements.
The last type of laser-based sensor is a LiDAR (Blais, 2004; Lee et al.,
2019; Lee and Kim, 2022; Park et al., 2007), which uses either a
pulse-based or phase-based algorithm. Using a galvanometer and
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rotating mechanical station, the LiDAR scans objects in three dimensions
and generates their three-dimensional coordinates. Note that the LDV
and LTS estimate single-point displacements in the LOS direction, but a
LiDAR can estimate three-dimensional and full-field displacements.
However, the displacement estimation performance of a LiDAR is much
worse than those of an LDV and LTS. Currently, most LiDARs can only
measure displacements with an accuracy of 2-3 cm, while LiDARs that
can estimate displacements with millimeter-level accuracy are fairly
expensive. Fig. 10 summarizes the advantages and disadvantages of these
three different laser-based sensors.

2.2.4. Level

A level is a traditional instrument used for structural vertical-
displacement measurement. Fig. 11(a) shows an overview of level-
based structural vertical-displacement estimation. A level is installed at
a stationary location and properly leveled to ensure that the optical axis
of the telescope of the level is in a horizontal direction. A leveling rod is
installed on a target structure, and a height value (Hg) can be obtained by
focusing the telescope on the leveling rod. Finally, the variation of Hg
becomes the vertical displacement of the target structure. In previous
studies, levels have been adopted to measurement the displacements of
bridges (Zhou et al., 2021; Yu and Zhang, 2020), dams (Corsetti et al.,
2018), and underground tunnels (Zhou et al., 2020a), and these
measured displacements were used as reference displacements to eval-
uate techniques developed using other sensors. Note that even though a
high-accuracy displacement can be achieved using a level, the manual
leveling and measurement requires well-trained workers, and inaccurate
operation may lead to large displacement measurement errors. More-
over, it is not suitable for high-sampling-rate or long-term continuous
displacement monitoring.

2.2.5. TS

A TS is another traditional instrument used for structural displace-
ment estimation. Similar to a level, it measures the vertical displacement
as the variation of a target height. Fig. 11(b) gives an overview of TS-
based vertical displacement estimation. A TS installed at a stationary
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Fig. 9. Working principles of three different laser ranging algorithms: (a) pulse-based algorithm, (b) phase-based algorithm, and (c) triangulation algorithm.
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Fig. 11. Overview of (a) level-based and (b) TS-based vertical displacement estimation.

location emits a modulated wave, which is reflected by a prism installed
at a target structure. Then, the LOS distance between the TS and target
(D1), and the angle of the sighting line relative to the horizontal axis (),
are estimated by analyzing the emitted and reflected waves. The height
of the prism can be estimated as (Hr + Dy, sin (8)). Considering that the
height of the tripod (Hr) is constant, the variance of Dy sin () with
respective to time becomes the vertical displacement of the target
structure. Note that the basic principle of a TS is explained here for
vertical-displacement estimation, but a TS can be easily extended to both
horizontal- and vertical-displacement estimation by measuring the hor-
izontal angle of the sighting line relative to a certain reference axis as
well. The first-generation of TS required manual calibration and mea-
surement, but the new generation of TS, i.e., a robotic total station (RTS),
integrates an axial stepper motor, a TS, and an automatic target align-
ment and identification algorithm. Therefore, it achieves automated
structural displacement measurement. An RTS has been adopted for
bridge and tunnel displacement measurements (Zhou et al., 2020a; Yu
et al., 2017; Psimoulis and Stiros, 2007; Stiros and Psimoulis, 2012), and
it can achieve a millimeter-level displacement measurement accuracy.
However, it has a limited sampling rate of up to 20 Hz and is not suitable
for long-term continuous displacement monitoring.

3. Structural displacement sensing techniques using multi-mode
sensor fusion

Because all the sensors discussed in section 2 have limitations,
extensive efforts have been made to combine multi-mode sensors to
obtain better structural displacement estimations. Most sensor-fusion
applications have combined an accelerometer with other sensors
such as strain sensors and vision cameras, but the fusion applications
of strain sensors and an inclinometer, an LDV and LiDAR, an LDV and
a vision camera, and a vision camera and LiDAR have also been
explored.

3.1. Fusion of accelerometer with other sensors

Aside from their inability to estimate low-frequency displacements,
accelerometers perform well in almost every respect, as shown in Table 1.
Therefore, combining an accelerometer with other sensors is straight-
forward, with the accelerometer determining the high-frequency
displacement and the other sensor determining the low-frequency
displacement.

3.1.1. General framework

The fusion of accelerometers and other sensors has been extensively
studied, and the general framework of this fusion using a Kalman or FIR
filter is shown in Fig. 2.

(a) Multi-rate Kalman filter

A multi-rate Kalman filter (Lee et al., 2010) has commonly been used
in previous studies on data fusion-based structural displacement esti-
mation (Zhu et al., 2020; Zhang et al., 2023), and its overall working
principle is briefly introduced here. Let x; and x be the true velocity and
displacement, respectively, at the kth time step. Then, a discrete state
space model for the acceleration-displacement relationship can be
expressed as follows:

Xy :A(Ata)x},l +B(Ata)ak,1 +B(Al’a)Wk,1 12)
u = Hx, + v (13)
Af
1 At “
A(Atu):{o 1},3(%): 2 | H=[1 0] a4
At

where x; is the state vector {xy, Xk}T, and ai_1 anduy are the measured
acceleration and displacement, respectively. wy_; and v, are the accel-
eration and displacement noises, respectively, and their variances are
denoted by g and r, respectively. At, is the time interval of the acceler-
ation measurement. Based on this model, a multi-rate Kalman filter is
formulated for displacement estimation using synchronous acceleration
and displacement measurements. The state vector is predicted as X}
using the estimated state vector and measured acceleration at the (k-1)™
time step ()?,:1 and ax_1, respectively):
X, =A(A) %, + B(At)a @s)

and the covariance matrix of the error in ¥ (IA’,Z ) is calculated as follows:

P, =A(A1,)P,_AT(At,) + qB(At,)B (At,) (16)

~+ . . . . ~
where P, , is the covariance matrix of the error in X} ;. If the
displacement measurement (i) is available, X, is corrected to E,:r, and

. . ot e .
the covariance matrix of the error in x,f (P,) is calculated accordingly,

% =(I—KH)%, + P H (HP H" +7r) u, a7

P, = (1-P.H"(HP H +R) "H) P, (18)

If the displacement measurement is not available, the following is
used:

19



Z. Ma et al.

Table 1
Comparison of different sensors used for structural displacement estimation.

Journal of Infrastructure Intelligence and Resilience 2 (2023) 100041

Sensors Measurement ~ Sampling  Stationary Measurement  Multi-point Long-term Computational ~ Other limitations
Accuracy rate installation  direction measurement  monitoring  efficiency
location

Contact LVDT (Nassif et al., 2005; High >100 Hz Yes Line of No No Low Small-scale
Santhosh and Roy, 2017) sight (LOS) structures
Accelerometer (Lee et al., High >100 Hz No 3D No Yes Low High-frequency
2010; Gomez et al., 2018) displacement
Strain sensor (Shin et al., Low >100 Hz No V/H Yes No Low Pre-knowledge of a
2012; Zhang et al., target structure
2018a)
Inclinometer (Hou et al., Low >100 Hz No V/H Yes Yes Low Simple beam-type
2005) structure
Connecting pip (Liu et al., Medium <20 Hz Yes v No Yes Low Cumbersome
2015; Zhou et al., 2021) installation
Optical fiber sensor High >100 Hz No LOS No Yes Low Relative
(Ramakrishnan et al., displacement
2016)
GNSS (Tamura et al., Low <20 Hz No 3D No Yes Low Multi-pathing issue
2002)

Noncontact  Stationary vision camera Medium >100 Hz Yes 2D Yes No High Sensitive to
(Feng et al., 2015; Luo illumination
and Feng, 2018)
Vision camera on target Medium >100 Hz No 2D No Yes High
structure (Yu and Zhang,
2020)
Vision camera on a drone ~ Medium >100 Hz No 2D Yes No High
(Yoon et al., 2018; Weng
et al., 2021)
Fixed radar (Zhang et al., High >100 Hz Yes LOS Yes No Low Manual
2020; Gentile and calibration, phase
Bernardini, 2008, 2010) wrapping
Radar on a target High >100 Hz No LOS No Yes Low
structure (Guan et al.,
2017, 2018)
LDV (Reu et al., 2017; High >100 Hz Yes LOS No No Low Reflector required
Toyoshima et al., 1994)
LTS (Zhuojiang et al., High >100 Hz Yes LOS No No Low
2021)
LiDAR (Lee et al., 2019; Low <100 Hz Yes 3D Yes No High -
Lee and Kim, 2022; Park
et al., 2007)
Level (Zhou et al., 2021; High Manual Yes \ No No High Leveling rod
Yu and Zhang, 2020) required
TS (Zhou et al., 2020a; Yu  High <20 Hz Yes 2D Yes No High Target required

et al., 2017)

Note that there are several limitations, and a few attempts have been
made to address these. For example, Xu et al. combined a multi-rate
Kalman filter with maximum likelihood estimation (MLE) to automati-
cally estimate the values of g and r (Xu et al., 2017); Kim et al. revised the
state-space mode to explicitly consider the acceleration bias (Kim et al.,
2014), and this work was further improved by proposing a two-stage
Kalman filter (Kim et al., 2016b); Ma et al. revised the multi-rate Kal-
man filter to make it suitable for fusing asynchronous measurements (Ma
et al., 2022b).

(b) Finite impulse response (FIR) filter

FIR filter-based fusion for structural displacement estimation has also
been extensively studied in previous works (Park et al., 2013b; Ma et al.,
2021), and its overall working principle is briefly introduced here. With
acceleration (a) and displacement (z) measurements available within a
given time window [(k — N)At, (k + N)At|, the displacement can be
estimated as follows:

w' = (A (L'L+221) " L' La+ 2 (L'L+2°1) "'u; L=L,L, (20)
u'(k—N) u(k —N) alk—N+1)

u' = : ju= : ja= : (21)
u'(k+N) u(k +N) a(k+N —1)

where u” is the estimated displacement; At is the time interval of the
measurements; and A is the regularization factor. L. and L, denote a
second-order differential operator matrix and weighting matrix, respec-
tively. More details on the derivation of Equation (20) can be found in
Lee et al. (2010). Because the displacement estimation has the best
performance at the center of the time window, only the displacement
estimated at the center (u"(k)) is retained:
u' (k) =Cya+ Cru (22)
where Cy and C; are the (N-&-l)th rows of matrices
{(A*(LTL+221) 'LTL,} and {2>(LTL+2%I) "'}, respectively. Note that
Cy is a combination of a double integrator and high-pass filter, and C;, is a
low-pass filter. Therefore, the final displacement is estimated by
combining the low-frequency displacement from « and high-frequency
displacement from a, as shown in Fig. 12. Note that other different var-
iants of the FIR filter have been proposed (Park et al., 2018; Hong et al.,
2010, 2013), but the basic working principles are similar to those of the
FIR filter.

3.1.2. Sensor-fusion examples

Accelerometers have been used in combination with inclinometers,
vision cameras, GNSSs, strain sensors, and millimeter wave radars. Most
of the existing studies mainly focused on the fusion of the initial
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Fig. 12. Overview of improved structural displacement estimation using FIR-filter-based fusion of acceleration and initial displacement.

displacement from one of these sensors and the acceleration from the
accelerometer. For example, Zhu et al. (2020) estimated
low-sampling-rate and low-accuracy displacements using strain mea-
surements and then fused these strain-based displacements with
high-sampling-rate acceleration measurements using a multi-rate Kal-
man filter to obtain the final displacement with a high sampling rate and
high accuracy for high-rise buildings. Zhou et al. (2022) performed
similar work but an FIR filter was adopted instead of a Kalman filter. The
fusion of the vision-based displacement and acceleration was explored by
Park et al. (2018) using an FIR filter, and by Chang et al. (Chang and Xiao,
2010) and Xu et al. (2019) using a multi-rate Kalman filter. Ozdagli et al.
(2017) estimated displacements for cantilever-type railway bridge piers
through the fusion of the inclinometer-based displacement and acceler-
ation. Xu et al. (2017) and Koo et al. (2017) explored the fusion of the
GNSS-based displacement and acceleration using an MLE-enhanced
multi-rate Kalman filter and a two-stage multi-rate Kalman filter,
respectively.

However, a low sampling rate and low accuracy are not the only is-
sues when estimating the displacement using these sensors. Another
trend in multi-sensor fusion-based structural displacement estimation is
to first use the acceleration to assist in the displacement-estimation
process of these sensors, and then fuse the displacements from these
sensors with the acceleration, as shown in Fig. 13. For example, when
fusing the acceleration with strain gauge measurements, the strain-based
displacement is usually estimated with a mode-superposition algorithm.
However, this algorithm requires mode shapes and the neutral axis
location of a target structure. Park et al. (2013b) eliminated this
requirement by using simplified mode shapes and introducing a scale
factor to estimate the neutral axis location and compensate for the
displacement estimation error induced by the discrepancy between the
simplified and true mode shapes. The unknown scale factor was
pre-estimated using the initial strain and acceleration measurements.

recursive least square algorithm and an FIR filter to simultaneously es-
timate the unknown scale factor and displacement at each time step.

With the help of an acceleration measurement, Chan et al. (2006),
and Moschas and Stiros (2011), first denoised the GNSS-based
displacement using the combination of Empirical mode decomposition
(EMD) and an adaptive filter, and the multi-level filtering algorithm,
respectively. Then, the denoised GNSS-based displacements were com-
bined with the acceleration for the final displacement estimation. A
similar attempt was made by Kim and Sohn (2020). A modified heuristic
drift reduction algorithm was first applied to reduce the low-frequency
error in the original GNSS-based displacement and obtain an enhanced
GNSS-based displacement, which was further fused with an acceleration
measurement using a two-stage multi-rate Kalman filter to estimate the
final displacement.

Fig. 14 shows a structural displacement estimation technique that
uses asynchronous measurements from a vision camera and an acceler-
ometer (Ma et al., 2022b). A scale factor is first calculated automatically
from the initial acceleration and vision measurements. Next, a
low-sampling-rate vision-based displacement is estimated using an
improved feature matching algorithm that includes acceleration-aided
ROI updating and mismatch rejection. Finally, the vision-based
displacement is fused with the high-sampling-rate acceleration using
an adaptive multi-rate Kalman filter to estimate the final displacement
with improved accuracy and an increased sampling rate. The technique
was further enhanced by replacing a feature-matching algorithm with
hybrid computer vision to further improve the displacement estimation
accuracy, with only a slight sacrifice in efficiency (Ma et al., 2022c).

A similar framework has been adopted for structural displacement
estimation using a millimeter-wave radar and an accelerometer collo-
cated at the displacement estimation points of a target structure (Ma
et al., 2022d, 2023a). Using the initial radar and acceleration measure-
ments, the best target for the millimeter-wave radar was automatically
selected from the surroundings of the target structure, and the direction
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Fig. 13. Improved framework for structural displacement estimation through fusion of accelerometer with other sensors.
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conversion factor was automatically estimated for this target. Afterward,
the radar-based displacement was estimated in real-time from the best
target with the help of the developed acceleration-aided adaptive
phase-unwrapping algorithm. The radar-based displacement was finally
fused with the acceleration measurement using an FIR filter to estimate
the final displacement with improved accuracy.

3.2. Other sensor-fusion examples

In addition to the fusion of accelerometers and other sensors, other
sensor-fusion combinations have also been studied. Sun et al. fused
multiple strain sensors and inclinometers for bridge displacement
estimation (Sun et al., 2020), and Kim et al. fused the LiDAR-based
displacement and LDV-based velocity using a Kalman filter for
improved displacement estimation (Kim and Sohn, 2017; Kim et al.,
2016a). Efforts have also been made to combine a vision camera and an
LDV installed on a drone (Nasimi and Moreu, 2021a, 2021b). The LDV
measured the relative displacement between a target structure and the
drone, and the 6-DOF motion of the drone was estimated using the
vision camera and an artificial target placed at a stationary location.
Finally, the absolute displacement of the target was estimated by
compensating for the errors induced by the drone motion. Note that the
drone had to be close to the artificial target to ensure an accurate
estimation of the 6-DOF motion of the drone, and that the target
structure had to have a vertically flat surface, both of which may not be
easy to satisfy in most applications. The fusion of a vision camera and
LiDAR was explored by Lee et al. (2022b). The displacement of a target
structure in the image plane was first estimated in pixel units using the
vision camera, which was then converted into length units using the
transformation relationship between the image and world coordinates
developed by the LiDAR.

4. Applications and challenges
4.1. Domain-specific applications

The displacement-estimation techniques discussed in the previous
two sections have been applied to a wide range of structural types,
including buildings and bridge structures.

4.1.1. Building structures

Table 2 summarizes the studies on displacement estimation for high-
rise building structures. RTK-GNSS was applied to estimate the
displacement of a 118-m-high steel tower under wind loadings (Tamura
et al., 2002). A vision camera installed on a drone was used to estimate a
large dynamic structural displacement of the 247-m-high ThyssenKrupp
elevator tower excited using an active mass damper (Weng et al., 2021).
The displacements of the 454-m-high Canton Tower were first estimated
using strain sensors (Xia et al., 2014) under typhoon Usagi and then using
strain sensors and an accelerometer (Zhu et al., 2020) under typhoon
Koppu and environmental temperature variation. The fusion of strain
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sensors and an accelerometer has been applied for the displacement
estimation of a 600-m-high-skyscraper (Zhou et al., 2022).

Other building structures that are not considered high-rise buildings
have weak vibrations under ambient and wind excitations, and therefore
no existing studies are available on their displacement estimation.
However, accelerometers are commonly installed on these building
structures, and their displacements during earthquakes have been esti-
mated from acceleration measurements.

4.1.2. Bridge structures

Displacement estimation has been extensively studied for large-span
bridges, and these studies are listed in Table 3. RTK-GNSS was applied
to estimate the displacement of the 720-m-long Hakucho Suspension
Bridge under wind loadings (Nakamura, 2000). A connecting pipe system
was used to estimate the multi-point displacement of the 820-m-long
Nanxi Suspension Bridge under environmental temperature variation
and vehicle loadings (Liu et al., 2015). Vision cameras were adopted to
estimate the displacements of the 451-m-long Manhattan Bridge (Luo
and Feng, 2018) and a 100-m-long arch bridge (Yu and Zhang, 2020)
under normal operation and controlled truck excitations, respectively.
Radars were applied to estimate the displacements of the 448-m-long
Stonecutters Bridge (Zhang et al., 2018b) under wind and vehicle load-
ings, the 1377-m-long Tsing Ma Bridge (Zhang et al., 2018b) under train
loadings, and the 1200-m-long Dasha suspension bridge (Zhang et al.,
2020) under controlled truck excitations. The displacements of the first
two bridges were also estimated using vision cameras under controlled
truck and normal operations, respectively. The fusion of different sensors
has also been used for the displacement estimation of large-span bridges.
A GNSS and an accelerometer were adopted to estimate the displace-
ments of the 300-m-long Yeongjong Grand Bridge (Kim et al., 2018),
280-m-long Qingfeng Bridge (Kim and Sohn, 2020), and 704-m-long San
Francisco-Oakland Bay Bridge (Kim and Sohn, 2020) under normal
operation. FBG strain sensors and an accelerometer were applied to es-
timate the displacement of the 250-m-long Sorok Bridge under controlled
vehicle loadings (Park et al., 2013b).

Table 4 lists the studies on short/medium-span bridge displacement
estimations. Strain sensors were used for estimating the displacements of
steel and concrete girder bridges under truck loadings (Helmi et al.,
2015). The displacements of prestressed-concrete bridges were estimated
using connecting pipe systems under truck loadings over the short term
(Zhou et al., 2021) and long term (Lee et al., 2022a). The displacements
of a prestressed-concrete bridge were also estimated using a vision
camera (Lee et al., 2020) and LiDAR (Lee et al., 2019) during the con-
struction stage. Accelerometers were used to estimate the dynamic dis-
placements of the piers of a timber railway bridge (Gomez et al., 2018;
Moreu et al., 2016), and a microwave radar was used to estimate the
dynamic displacement of a timber suspension pedestrian bridge (Guan
et al., 2017). Studies have also been done on the fusion of different
sensors to estimate the displacements of short/medium-span bridges,
including the fusion of an LDV and a LiDAR for a highway bridge (Kim
et al., 2016a), the fusion of a vision camera and a LiDAR for a railway

Table 2
Summary of studies on high-rise building-displacement estimation.
Structure Height Sensor(s) used Reference sensor Excitation Accuracy Sampling
(m) rate (Hz)
Steel tower 118 RTK-GNSS (Tamura et al., N/A Wind N/A 10
2002)
ThyssenKrupp elevator 247 Vision camera (on a drone) Velocity sensor Excited using an active mass damper RMSE of 2.4 cm 25
tower (Weng et al., 2021)
454-m-high Canton 454 Strain sensor & Accelerometer RTK-GNSS Typhoon Usagi RMSE = 1.081 cm 5
Tower (Zhu et al., 2020)
Strain sensor (Xia et al., 2014) RTK-GNSS Temperature variation and Typhoon Koppu Centimeter-level 1
600-m-high-skyscraper 600 Strain sensor & Accelerometer Microwave radar Typhoon Kompasu Millimeter-level 1
(Zhou et al., 2022)
Tianjin radio and 415 RTK-GNSS (Xiong et al., N/A Normal operation N/A 10

television tower 2022)
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Table 3
Summary of studies on long-span bridge displacement estimation.
Bridge Span Sensor(s) used Reference sensor Excitation Accuracy Sampling
length (m) rate (Hz)

Hakucho Suspension Bridge 720 RTK-GNSS (Nakamura, 2000) N/A Wind N/A 1

Nanxi Suspension Bridge 820 Connecting pipe (Liu et al., Simulation Temperature variation N/A 0.5
2015) and vehicle loadings

Manhattan Bridge 451 Vision camera (Luo and Feng, N/A Normal operation N/A 60
2018)

Arch bridge 100 Vision camera (Yu and Zhang, Inclinometer Controlled trucks < 0.2 mm 1
2020) and level

Stonecutters Bridge 448 Vision camera (Ye et al., N/A Controlled trucks N/A 5

Tsing Ma Bridge 1377 2013) GNSS Trains Consistent with GNSS 10

Stonecutters Bridge 448 Ground-based radar (Zhang N/A Wind and vehicle N/A 100

Tsing Ma Bridge 1377 et al., 2018b) Trains

Dasha suspension bridge 1200 Ground-based radar (Zhang Connecting pipe Controlled trucks Consistent with reference 100
et al., 2020) and Camera

Yeongjong Grand Bridge 300 GNSS & Accelerometer (Kim LDV Normal operation RMSE of 1.55 mm 100
et al., 2018)

Qingfeng Bridge 280 GNSS & Accelerometer (Kim LDV Normal operation RMSE of 5.08 mm 100

San Francisco-Oakland 704 and Sohn, 2020) RMSE of 5.44 mm

Bay Bridge
Sorok Bridge 250 FBG strain sensor & LDV Controlled trucks Consistent with reference Not mentioned

Accelerometer (Park et al.,
2013b)

Table 4
Summary of studies on short/medium-span bridge-displacement estimation.
Bridges Span length Sensor(s) used Reference sensor Excitation Accuracy Sampling
(m) rate (Hz)
Steel girder bridge 39.3 Strain sensor (Helmi LDV A dump truck with a trailer Not completely 500
et al., 2015) in agreement
Concrete box-girder 14 LVDT Several trucks < 8.18% 50
bridge
Piles of timber railroad 14 (height) Accelerometer (Moreu LVDT Work trains < 0.45 mm (< 13.6%) 100
bridges et al., 2016)
18 (height) Accelerometer (Gomez Vision camera Freight train < 1.6% (>0.9 Hz) 128
et al., 2018)
PSC box-girder bridge 16 Connecting pipe (Zhou Manual leveling Three-axle trucks <13% 20
et al., 2021) (Vanicek et al., 1980)
PSC box-girder bridge Not mentioned Connecting pipe (Lee N/A 2-year monitoring N/A 20
et al., 2022a)
PSC railroad bridge 40 Vision camera (Lee et al., Simulation and LiDAR During construction N/A 1/60
2020) (Lee et al., 2019)
LiADR (Lee et al., 2019) Simulation < 3.4 mm 1/15 days
Timber suspension 50 Radar (Guan et al., 2017) Accelerometer A person jumping N/A Not provided
pedestrian bridge
Highway bridge 45 LDV and LiDAR (Kim LDVT Two 3-axel trucks < 0.07 mm 1280
et al., 2016a)
Railroad bridge 40 Vision camera & LiDAR LVDT Trains < 0.1 mm 163
(Lee et al., 2022b)
Steel box-girder 40 Accelerometer & strain LDV People jumping and walking <0.09 mm 128
pedestrian bridge gauge (Ma et al., 2021)
Accelerometer & vision <0.06 mm 100
camera (Ma et al., 2022c)
Accelerometer & <0.04 mm 100

millimeter wave radar
(Ma et al., 2023a)

bridge (Lee et al., 2022b), and the fusion of an accelerometer with three
different sensors (i.e., strain gauges, a vision camera, and a
millimeter-wave radar) (Ma et al., 2021, 2022c, 2023a) for a steel
box-girder pedestrian bridge.

4.1.3. Other structures

As listed in Table 5, displacements have also been estimated for
structures other than bridges and building structures. GNSS was used to
monitor the long-term displacements of the Eleonora D'Arborea Dam
(Barzaghi et al., 2018) and Xilongchi Dam (Xi et al., 2022). A vision
camera was used to estimate the displacement of a football stadium
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during normal operation. The fusion of strain sensors and accelerometers
was used for the displacement estimation of a transmission tower under
pseudo-static testing. The long-term displacement of a landslide was
monitored using a GNSS (Pehlivan, 2022). An RTS (Zhou et al., 2020a)
was used to estimate the long-term displacement of an underground
tunnel. A vision camera was used to estimate the displacement of an
underground drainage tunnel under normal operation. Displacement
estimation for underwater structures (i.e., submerged floating tunnels)
has also been studied through the fusion of strain sensors and acceler-
ometers (Ma et al., 2022e, 2023b), but field applications have not yet
been performed.
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Table 5
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Summary of studies on structural displacement estimation for structures other than bridges and building structures.

Structure Sensor(s) used Reference sensor Excitation Accuracy Sampling rate (Hz)
Eleonora D'Arborea Dam GNSS (Barzaghi et al., 2018) Pendulums Long term N/A 1

Xilongchi Dam GNSS (Xi et al., 2022) N/A Long term N/A Static

Football stadium Vision camera (Khuc and Catbas, 2017b) LVDT Normal operation +0.04 mm 60

Transmission tower Strain sensor & Accelerometer (Zhang et al., 2023) TS Pseudo-static test <5.4 mm 100

Landslide GNSS (Pehlivan, 2022) N/A Long term N/A

Underground tunnel RTS (Zhou et al., 2020a) Level Long term N/A Static
Underground drainage tunnel Vision camera (Chen et al., 2020) N/A Normal operation N/A 1/600

4.2. Discussion and challenges

4.2.1. Measurement accuracy

The measurement accuracy is very important for a mature measure-
ment system and should be considered when selecting a sensor for
structural displacement estimation. The measurement-accuracy require-
ment varies for different types of structures. Large-scale structures such
as long-span bridges and high-rise buildings usually have at least
centimeter-level displacements. Thus, a millimeter-level accuracy may be
sufficient for these structures. Therefore, the fusion of a GNSS and an
accelerometer (Kim and Sohn, 2020; Kim et al., 2018) seems to be a good
option for these structures because it has sufficient accuracy, easy
installation, and the ability to be used for long-term continuous moni-
toring. However, submillimeter accuracy is required for small-scale
structures because their displacements are in the range of millimeters
or less.

However, it is not simple to quantify the estimation accuracies of
many sensors because they vary with the hardware setup and field con-
ditions. For example, the displacement-estimation accuracy of a vision
camera is sensitive to environmental conditions such as the lighting
conditions and the atmospheric refraction and turbulence. Many factors
such as the camera-to-target distance and texture of a target differ with
the application, but they have significant effects on the displacement-
estimation accuracy. Moreover, the quantification of the displacement-
estimation accuracy under field conditions is difficult. The
displacement-estimation accuracy of any developed technique should be
evaluated through comparisons with reference displacement measure-
ments, but it is commonly difficult to obtain such reference displace-
ments. As listed in Tables 2-5, although various techniques have been
proposed and applied for structural displacement estimation, their ac-
curacies were not well-evaluated. Most studies either compared the fre-
quency spectra of the estimated displacement and acceleration
measurement or qualitatively analyzed the consistency between the
estimated displacement and applied loading.

4.2.2. Frequency range

The frequency range is also an important factor that should be
considered when selecting a sensor for structural displacement estima-
tion. The displacements of most civil structures are dominated by low-
frequency (including pseudo static and static) components induced by
the environmental temperature variation, vehicle loading, wind loading,
etc. These play a vital role when using the displacement for safety-index
evaluation (AASHTO, 2017; MLTM. Korea, 2010; MOHURD., 2020),
bridge-loading tests (Lee et al., 2006; Vicente et al., 2015; Dong et al.,
2020; Sun et al., 2021; Hester et al., 2017), damage detection (Feng and
Feng, 2016), finite element model updating (Feng and Feng, 2015; Civera
et al., 2020), etc. Therefore, the ability to estimate the low-frequency
displacement is important for any sensor. As shown in Table 1 and dis-
cussed in section 2, with the exception of the accelerometer, the esti-
mation of the low-frequency displacement is not difficult for the various
sensors used. However, the accurate estimation of the low-frequency
displacement is still challenging for most sensors. For example, a GNSS
usually suffers from a multi-path issue, which causes low-frequency
(<0.1 Hz) error in the GNSS-based displacement. Strain gauges have
zero-drift for long-term monitoring (Lee et al., 2022c). Time-varying
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environmental conditions such as the temperature. Light conditions, at-
mospheric refraction, and turbulence will cause a low-frequency error in
vision-based displacement (Luo et al., 2020).

Apart from these low-frequency displacements, many structures also
have high-frequency displacements as a result of resonance. Thus, the
sampling frequency should be large enough to include all the high-
frequency components. The importance mode frequencies of civil in-
frastructures are usually below 50 Hz. Thus, a sampling rate of 100 Hz is
sufficient (Feng and Feng, 2018). As listed in Tables 2-5, high-sampling
displacement measurements are challenging for some sensors because of
hardware limitations (e.g., a GNSS, a connecting pipe, or an RTS) or high
computational costs (e.g., a vision camera or LiDAR). However, the
fusion of one of these sensors with an accelerometer seems to be a good
solution to address the high-sampling displacement measurement issue,
as reported in previous studies (Ma et al., 2022b; Kim et al., 2018).

4.2.3. Multi-point displacement measurement

As previously mentioned, the displacement response has been used
for bridge-loading tests (CEN. Eurocode 1, 2003; Lee et al., 2006;
Vicente et al., 2015; Dong et al., 2020; Sun et al., 2021), structural
damage detection (Hester et al., 2017), modal identification (Feng and
Feng, 2016, 2017; Kim et al., 2013; Bhowmick and Nagarajaiah, 2020),
and finite element model updating (Jiao et al., 2021; Feng and Feng,
2015). In most of these studies, the displacements at multiple locations
on a target structure are needed. The multi-point displacements of
target structures can be simultaneously estimated using a radar, vision
camera, or LiDAR (Zhang et al., 2020; Gentile and Bernardini, 2010;
Bhowmick and Nagarajaiah, 2022) installed at a stationary location.
However, securing such an installation location may not be easy,
especially for long-term continuous displacement estimation. The
installation of these sensors at a displacement estimation point of a
target structure eliminates the need for such a stationary installation
but sacrifices the ability to obtain simultaneous multi-point displace-
ment estimations. Moreover, multi-point displacement estimations
commonly have lower displacement-estimation accuracy. For example,
when estimating the displacements at multiple locations of a target
structure using a vision camera, all of the locations must be visible in
the field of view (FOV) of the camera. However, a wide FOV requires
either a long distance between the camera and target structure or a
short focal length for the camera. Both of these will cause a large-scale
factor and poor displacement-estimation performance. Note that
simultaneous multi-point displacement estimation can also be achieved
using a synchronized system that includes multiple sensors (Shajihan
et al., 2022; Lydon et al., 2018), where each sensor module only esti-
mates the displacement at a single point. However, the cost will also
increase.

4.2.4. Multi-directional displacement measurement

Short/medium span bridges commonly vibrate only in the vertical
direction. Thus, monitoring the vertical displacement is sufficient. Ver-
tical displacement monitoring may be sufficient for cable-stayed bridges,
beam-type bridges, and arch bridges, but both the vertical and horizontal
displacements need to be monitored for suspension bridges (Mot. Jt/,
2022). However, all the studies listed in Table 5 estimated vertical bridge
displacements alone. For building structures, the vertical displacement
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can be ignored, but the horizontal displacements in two directions should
be monitored.

Most of the sensors mentioned in section 2 can only estimate the
displacement in a single direction. For example, LVDT, LDV, LTS, radar,
and optical fiber sensors only estimate the LOS displacement, while
connecting pipe, level, and inclinometer sensors can only estimate the
vertical displacement. Some sensors can estimate two-dimensional dis-
placements, including vision cameras for in-plane 2D displacements,
strain sensors for the two horizontal displacements of a building, and an
RTS for one vertical and one horizontal displacement. Only a few sensors
such as a GNSS, LiDAR, and an accelerometer can estimate 3D dis-
placements. However, an accelerometer can only estimate the high-
frequency displacement, while the other three sensors suffer from a
low-accuracy issue in practical applications. Note that a few attempts
have been made to estimate 3D displacements using a vision camera.
However, either a binocular camera (Shao et al., 2021, 2022) or an
additional projector (Felipe-Sesé et al., 2014) is required, and these
techniques are not suitable for practical applications because of the long
camera-to-target distances required. In addition, 3D displacements and
3D rotations can be simultaneously estimated using a monocular camera
and an artificial target, but high-accuracy estimation requires short
camera-to-target distances.

4.2.5. Long-term continuous displacement monitoring

As shown in section 4.1, domain-specific applications mainly focus on
short-period displacement surveys. Although a few attempts have been
made for long-term displacement monitoring using GNSSs, connect pipe
systems, or vision cameras, their displacement monitoring performances
have not been well validated. For long-term continuous displacement
monitoring, the displacement estimation techniques must have robust-
ness to time-varying operational and environmental conditions. For
example, a radar, laser-based sensor, vision camera, level, and TS require
a clear LOS between the target and sensor, which may not be guaranteed
in some applications. The displacement estimation performance of a
vision camera is sensitive to the inevitable variation in the daily illumi-
nation level, and vision cameras cannot operate under poor illumination
conditions such as at night. The effects of atmospheric refraction and
turbulence on light or a laser beam propagating through the air may be
ignored for a short period but have to be considered in long-term
continuous displacement monitoring. In addition, extreme weather
conditions such as rain, snow, and fog have effects on the displacement-
estimation accuracies of many sensors, and they have to be considered in
long-term continuous displacement monitoring. In addition to the
robustness to time-varying operational and environmental conditions,
the ability to perform real-time displacement estimation is also impor-
tant. However, real-time estimation may not be feasible for sensors such
as vision cameras, which have a high computational cost for structural
displacement estimation.

4.2.6. Seismic-induced structural displacement estimation

It is essential to determine the structural displacement when assessing
the post-earthquake damage to civil infrastructures. However, few of the
techniques mentioned in section 2 can be applied to seismic-induced-
displacement estimation. LVDT, RTK-GNSS, and connecting pipe sys-
tems require a stationary reference point, while a vision camera, ground-
based radar, laser-based sensor, level, and TS must be installed at a sta-
tionary location, neither of which is possible in seismic-induced-
displacement estimation. Strain sensors and inclinometers cannot esti-
mate the rigid body translation of a target structure. Note that while
inclinometers were employed previously to estimate building displace-
ment under seismic loading, its emphasis was on the inter-story drift
(Hou et al, 2018). A single GNSS can be wused for
seismic-induced-displacement estimation, but only centimeter-level ac-
curacy can be achieved. Currently, accelerometers are the most
commonly used sensors for seismic-induced-displacement estimation.
However, measurement noise and acceleration baseline shifts interfere
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with low-frequency displacement estimation. Although several baseline
correction techniques have been proposed, they all require some ad-hoc
thresholds. High-pass filters have also been adopted to remove the
low-frequency drift, but the low-frequency component of the real struc-
tural response is also removed.

4.2.7. Other practical issues in displacement estimation for civil
infrastructures

In addition to the aforementioned considerations, other issues should
be considered for the practical application of displacement-estimation
techniques to civil infrastructures. The sensor installation location is
the first thing that should be considered for displacement estimation in
the field. The sensors used in the contact-type displacement-estimation
techniques discussed in section 2.1, including an accelerometer, an
LVDT, inclinometer, a strain sensor, a connecting pipe, an optical fiber
sensor, and a GNSS, have to be installed at displacement-estimation
points. The sensors used in the noncontact displacement-estimation
techniques discussed in section 2.2 are commonly installed at a fixed
location because most of the current studies focus on short-term
displacement surveys and prefer noncontact measurements. It should
be noted some radar-based, laser-based, and vision-based techniques
require the installation of an artificial target or a reflector at the
displacement measurement location, and therefore are not fully
noncontact techniques. In addition, as discussed in section 4.2.3, in order
to simultaneously estimate the structural displacements at multiple lo-
cations using a single sensor such as a vision camera or radar, it has to be
installed at a fixed location.

However, securing a fixed installation location can be challenging for
field applications, especially for long-term continuous displacement
estimation, because these sensors can be stolen or damaged when they
are permanently installed in a public open space. Getting permission to
install these sensors on privately owned properties can also be difficult.
For long-term continuous displacement monitoring, it is preferable to
install sensors on the target measurement points rather than off-site.
However, the installation of sensors at displacement-estimation points
results in additional problems. For example, when installing vision
cameras or radars on a target structure for displacement estimation,
multiple targets are commonly available in the FOV of the vision camera
or radar, and the automatic selection of a good target can be a problem. In
addition, a tiny structural rotation will introduce large errors in the
estimated displacements.

Moreover, the data measured by any sensor should be transmitted to
users, and sensors need power for their sensing, data processing, and
transmission operations. Therefore, the methods used for transmitting
data and supplying power should also be considered. A wired monitoring
system can provide relatively stable data transmission, and the power
supply may not be a problem even for long-term continuous monitoring.
However, a wired monitoring system is expensive to install and maintain
(Lynch, 2007). It has become increasingly popular in the field of SHM to
use wireless networking because it is less costly, and several studies have
been conducted to develop wireless displacement sensors (Shajihan et al.,
2022; Lydon et al., 2018; Hou and Wu, 2019; Ozdagli et al., 2018; Park
et al., 2014). However, wireless sensors have several problems, including
problems with time synchronization and decentralized data processing,
which directly affect the long-term reliability of data access via wireless
networks. Moreover, the power supply is a major issue when using
wireless displacement sensors for long-term continuous monitoring, but
the problem may be addressed by developing self-powered wireless
displacement sensors using energy harvesting (Wu et al., 2022).

5. Conclusion

This paper presented a comprehensive review of structural displace-
ment sensing techniques, particularly focusing on those used for civil
infrastructures. The general working principles of structural displace-
ment sensing techniques using thirteen different sensors were first
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reviewed, followed by a review of multi-sensor fusion-based structural
displacement sensing techniques. The domain-specific applications of
these techniques were then reviewed, and the remaining challenges were
discussed in detail. Although the potential of these displacement-
estimation techniques has been validated in various field applications,
the following issues should be addressed:

o The development of robust real-time displacement-estimation tech-
niques for long-term continuous monitoring;

o The development of low-cost wireless and self-powered displacement
Sensors;

o The development of six-degree-of-freedom structural displacement
estimation techniques;

o The development of seismic-induced structural displacement esti-
mation techniques.

In addition, other physical quantities like rotation, strain, accelera-
tion, wind speed, temperature, and humidity are also important for
structural health monitoring, and simultaneous measurements of multi-
ple physical quantities should be considered in future work.
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