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A B S T R A C T   

Structural displacements play an important role in the health monitoring of civil structures; however, the ac
curate measurement of structural displacements remains a difficult task. Previous efforts have combined a 
monocular camera and an accelerometer to estimate structural displacement, but only in-plane displacements 
could be estimated in this way. In this study, the fusion of a monocular camera and an accelerometer was further 
extended for out-of-plane or three-dimensional displacement estimation. A computer vision algorithm and an 
adaptive multi-rate Kalman filter were integrated to efficiently estimate high-sampled displacements from low- 
sampled vision images and high-sampled acceleration measurements. All parameters associated with the com
puter vision algorithm were automatically calibrated without using any user-defined thresholds. Experimental 
validation was performed on two building structures and a 10-m-long bridge structure, and the proposed method 
accurately estimated the displacement for all three structures with a root mean square error of less than 1 mm.   

1. Introduction 

Monitoring the displacement of civil structures is important because 
it plays a vital role in structural health monitoring. Displacement helps 
classify the global behavior of a structure and evaluate its safety. For 
instance, many countries, including the United States [1] and the Re
public of Korea [2], have adopted displacement as a safety indicator in 
their structural design specifications. In addition, displacement has been 
widely employed to evaluate the vibration serviceability of pedestrian 
bridges [3], identify the modal parameters of light poles [4] and 
building structures [5], and update finite element models of bridges [6]. 
Linear variable differential transformers (LVDT) [7,8], accelerometers 
[9,10], and the real-time kinematic global navigation satellite system 
(RTK-GNSS) [11,12] are traditional sensors used for structural 
displacement monitoring. However, the field installation of LVDT is 
cumbersome, unexpected scaffold vibration may lead to inaccurate 
displacement measurement, the accelerometer cannot estimate impor
tant low-frequency displacement, and RTK-GNSS has a limited sampling 
rate (less than 20 Hz) and limited accuracy (approximately 7–10 mm). 
Note that all of these sensors must be installed at the displacement 
estimation point of a target structure; therefore, methods that use these 
sensors are classified as contact-type methods. 

In recent decades, non-contact structural displacement estimation 

methods using laser Doppler vibrometers (LDV) [13] and radar systems 
[14,15] have attracted attention. High-accuracy displacement can be 
measured by LDV and radar systems at a high sampling rate; however, 
both LDV and radar systems are expensive. Vision cameras are also 
widely used for non-contact structural displacement monitoring, owing 
to their low cost. In these applications, a vision camera is mounted at a 
fixed point to track a target structure at its displacement estimation 
point. The structural displacement is first extracted from vision mea
surements using various algorithms, such as optical flow algorithms 
[16,17], feature-matching algorithms [18,19], and deep-learning algo
rithms [20,21], and then converted from pixel units to length units using 
a scale factor pre-estimated from the target dimensions [22] or the 
target-to-camera distance [23]. Note that most of these studies focused 
only on in-plane displacement. As shown in Fig. 1, the out-of-plane 
displacement of the target structure relative to the camera (uy) can 
theoretically be estimated from the temporal changes in the target 
height and width in the image plane (Δw and Δh, respectively) as 
follows: 

uy =
D
w

Δw =
D
h

Δh (1) 

where D denotes the target-to-camera distance. w and h denote the 
original target’s width and height, respectively, in the image plane. 
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However, D, which is at least a few meters, is much larger than uy, which 
is on the millimeter or centimeter scale, leading to inaccurate out-of- 
plane displacement estimation. A sampling moiré method has been 
proposed for out-of-plane displacement estimation, but the method es
timates single-directional displacement, and requires an additional 
artificial target [24,25]. There have been a few attempts at vision-based 
three-dimensional (3D) displacement estimation, but they require either 
a projector [26,27] or a binocular camera [28,29], and may have limited 
performance for long-distance displacement estimation. 

Recently, heterogeneous sensor fusion-based methods have been 
investigated for structural displacement estimation [30–33], and the 
fusion of accelerometers and vision cameras has been extensively 
studied. For example, Park et al. [34] and Xu et al. [35] estimated high- 
sampled structural displacement by fusing vision-based displacement 
and acceleration using a finite impulse response (FIR) filter and Kalman 
filter, respectively. The authors previously [36,37] combined a 
monocular camera and an accelerometer installed at a target structure to 
estimate the structural displacement at the installation point. The scale 
factor was automatically estimated using initial accelerations and vision 
images, and high-sampled structural displacement was estimated in 
real-time using adaptive multi-rate Kalman filter-based fusion of high- 
sampled acceleration measurement and low-sampled vision-based 
displacement estimated by an improved feature-matching algorithm 
[36] or a hybrid computer vision algorithm [37]. However, these 
methods estimate only the in-plane displacements. Some structures, 
such as buildings, often vibrate in two horizontal directions. Although 
some structures, such as bridges, may only vibrate in one direction, it 
may be difficult to find a nearby fixed target with which the structures 
have in-plane displacements. 

Using a monocular camera and triaxial accelerometer installed at the 
displacement estimation point of a target structure (as shown in Fig. 2 
(a)), this study proposes a structural displacement estimation method 
that is suitable for in-plane, out-of-plane, or even 3D displacement 
estimation. Fig. 2(b) shows a flowchart of the proposed method. First, 

the unknown parameters necessary for displacement estimation using a 
monocular camera (explained in Section 2) are calibrated using initial 
accelerations and vision images (Section 3.1). Then, after the first step, 
the vision images are used to estimate the vision-based displacements. 
Finally, an adaptive multi-rate Kalman filter combines the vision-based 
displacements with acceleration measurements to improve displace
ment estimation accuracy (Section 3.2). The performance of the pro
posed method was validated through a series of laboratory tests, as 
described in Section 4. Finally, concluding remarks are provided in 
Section 5. This study offers the following contributions: (1) 3D structural 
displacement estimation using a monocular camera and an accelerom
eter, (2) separation of in-plane and out-of-plane displacements using two 
targets within the field of view (FOV) of the monocular camera, (3) 
automated calibration of unknown parameters involved in the vision- 
based displacement estimation, and (4) accurate out-of-plane displace
ment estimation even at a long target-to-camera distance of 30 m. 

2. Structural displacement estimation using a monocular 
camera 

This section explains the working principle of structural displace
ment estimation using a monocular camera. The estimated vision-based 
displacement can be fused with acceleration measurements to obtain the 
final displacement, as explained in Section 3. Note that it is assumed that 
the camera is rigidly installed on the target structure without any ego- 
motion and the three axes of the camera are parallel to the three vi
bration directions of the structure. In addition, the selected targets 
tracking by the camera are stationary. 

2.1. In-plane or out-of-plane structural displacement estimation 

When a vision camera is mounted at the displacement estimation 
point of a target structure, as shown in Fig. 2(a), the structural 
displacement can be estimated by tracking a nearby fixed target in the 

Fig. 1. Target size change caused by target out-of-plane motion.  

Fig. 2. Overview of the proposed structural displacement estimation method: (a) sensor setup and (b) overall flowchart.  
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surroundings of the target structure using a feature-matching algorithm. 
The structural in-plane displacements relative to the target (ux and uz) 
can cause a target movement in the image plane as shown in Fig. 3(a), 
and the following relation can be found between the target movement in 
a pixel unit (din

H and din
V ) and the structural displacement in a length unit, 

ux = αin
Hdin

H ; uz = αin
V din

V (2) 

where αin
H and αin

V denote the scale factors for converting in-plane 
horizontal and vertical displacements from pixel units to length units, 
respectively, and their values can be estimated from the target di
mensions [22] or the target-to-camera distance [23]. 

If the structure has an out-of-plane displacement (uy) relative to the 
target, two-dimensional target movements (dout

H and dout
V in the hori

zontal and vertical directions, respectively) can be observed, as shown in 
Fig. 3(b), and the following relationship can be found between the target 
movements and the structural displacement: 

uy = αout
H dout

H =
D
LH

dout
H ; uy = αout

V dout
V =

D
LV

dout
V ; (3) 

where αout
H and αout

V denote the scale factors for converting the out-of- 
plane displacement from pixel units to length units when using hori
zontal and vertical target movements, respectively. D denotes the target- 
to-camera distance. LH and LV denote the horizontal and vertical dis
tances between the image center and the target center in the image 
plane, respectively. 

2.2. Three-dimensional structural displacement estimation 

If the target structure has 3D displacements, the target movements 
induced by the in-plane and out-of-plane structural displacements are 
mixed: 

dH = dout
H + din

H =
1

αout
H

uy +
1

αin
H

ux; dV = dout
V + din

V =
1

αout
V

uy +
1

αin
V

uz (4) 

This causes difficulties in 3D displacement estimation. However, 
multiple targets are commonly available in the FOV of the camera when 
a vision camera is installed at the displacement estimation point of the 
target structure. Assuming that two targets are selected, Equations (4) 
can be rewritten as 

[
dH,1
dH,2

]

=

⎡

⎢
⎢
⎢
⎣

1
αout

H,1

1
αin

H,1

1
αout

H,2

1
αin

H,2

⎤

⎥
⎥
⎥
⎦

[
uy
ux

]

;

[
dV,1
dV,2

]

=

⎡

⎢
⎢
⎢
⎣

1
αout

V,1

1
αin

V,1

1
αout

V,2

1
αin

V,2

⎤

⎥
⎥
⎥
⎦

[
uy
uz

]

(5) 

Then, 3D displacements can be estimated as 

[
uy
ux

]

=

⎡

⎢
⎢
⎢
⎣

1
αout

H,1

1
αin

H,1

1
αout

H,2

1
αin

H,2

⎤

⎥
⎥
⎥
⎦

− 1

[
dH,1
dH,2

]

;

[
uy
uz

]

=

⎡

⎢
⎢
⎢
⎣

1
αout

V,1

1
αin

V,1

1
αout

V,2

1
αin

V,2

⎤

⎥
⎥
⎥
⎦

− 1

[
dV,1
dV,2

]

(6) 

where the subscripts 1 and 2 denote the first and second targets, 
respectively. Here, the distance variation caused by the out-of-plane 
displacement is ignored, considering that the out-of-plane displace
ment at the millimeter or centimeter scale is much smaller than the 
target-to-camera distance of at least several meters. Note that these two 
targets should be far away from the image center in the image plane and 
they should be selected from opposite sides of images for better out-of- 
plane displacement estimation. In addition, these two targets should be 
close to the camera for best displacement estimation and have sufficient 
features. 

3. Three-dimensional structural displacement estimation using 
a monocular camera and a triaxial accelerometer 

This section proposes a structural displacement estimation method 
using a monocular camera and triaxial accelerometer installed at the 
displacement estimation point of a target structure, as shown in Fig. 2 
(a). Low-sampled 3D displacements are first estimated from vision im
ages using two selected ROIs and then fused with high-sampled accel
eration measurements with an adaptive multi-rate Kalman filter, 
thereby obtaining the final high-sampled displacements. Because several 
parameters are associated with vision-based 3D displacement estimation 
(Equation (6)), an algorithm was proposed to automatically calibrate 
them using initial accelerations and vision images. Therefore, the pro
posed method consists of two stages: (1) initial calibration (Section 3.1) 
and (2) real-time structural displacement estimation (Section 3.2). Note 
that the proposed method is explained here for displacement estimation 
in the x and y directions using target horizontal movement, but it can 
also be easily extended to 3D displacement estimation using target 
vertical movement. 

Fig. 3. Target movements caused by structural (a) in-plane (ux and uz) and (b) out-of-plane (uy) displacements.  

Fig. 4. Flowchart of motion separation index estimation.  
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3.1. Initial calibration 

3.1.1. Motion separation index and scale factor estimation 
To estimate the structural displacement from vision images using 

Equation (6), the parameters associated with the equation, such as the 
target-to-camera distance and target dimensions, should be known, but 
may not be readily available in some applications. Two motion sepa
ration indices are defined as 

ηout
H =

αout
H,2

αout
H,1

; ηin
H =

αin
H,2

αin
H,1

(7) 

and Equation (6) can be rewritten by introducing Equation (7): 

[
uy
ux

]

=

[
αout

H,1 0
0 αin

H,1

][
dout

1

din
1

]

=

[
αout

H,1 0
0 αin

H,1

][
1 1

ηout
H ηin

H

]− 1[
dH,1
dH,2

]

(8) 

Then, the motion separation indices (ηout
H and ηin

H) and scale factors 
(αout

H,1 and αin
H,1) can be separately calibrated using initial accelerations 

and vision images. 
Fig. 4 shows a flowchart of the motion separation index estimation 

using the initial vision images. Two ROIs were selected from the FOV of 
the vision camera to cover two targets and translations (dH,1 and dH,2) 
are estimated using the feature-matching algorithm from the initial Q 
vision images. The estimated translations are then transformed into the 
frequency domain using Fourier transform (MH,1(f) and MH,2(f)), and 
the following equation is obtained, 
[

MH,1(f )
MH,2(f )

]

=

[
1 1

ηout
H ηin

H

][
Mout

1 (f )
Min

1 (f )

]

(9) 

where Mout
1 (f) and Min

1 (f) denote the Fourier transform of dout
1 and din

1 ,

respectively. Considering that most structures have different first natu
ral frequencies in different directions, the target structure has different 
dominant frequencies in two different directions (i.e., fx and fy, 
respectively), 

Min
1

(
fy
)
= Mout

1 (fx) = 0 (10) 

Then, the following equation can be obtained from Equations (9) and 
(10), 

MH,1(fx) = Min
1 (fx);MH,1

(
fy
)
= Mout

1

(
fy
)
; (11)  

MH,2(fx) = ηin
HMin

1 (fx);MH,2
(
fy
)
= ηout

H Mout
1

(
fy
)
;

and two motion separation indices can be estimated as 

ηout
H =

MH,2
(
fy
)

MH,1
(
fy
); ηin

H =
MH,2(fx)

MH,1(fx)
(12) 

If two ROIs are selected from opposite sides of the FOV, ηout
H should 

become 

ηout
H = −

MH,1
(
fy
)

MH,2
(
fy
) (13) 

Note that for the structures with the same fundamental frequencies 
in different directions, the proposed technique requires that they have 
different excitation frequencies during the initial short period. Then, 
motion separation indices can be estimated in the same way. 

Fig. 5 shows a flowchart of the scale factor estimation using the 
initial accelerations and vision images. The translations estimated from 
the two ROIs are separated using the estimated motion separation 
indices: 
[

dout
1

din
1

]

=

[
1 1

ηout
H ηin

H

]− 1[
dH,1
dH,2

]

(14) 

and the separated in-plane and out-of-plane translations (dout
1 and din

1 ) 
are band-pass filtered. In contrast, in-plane and out-of-plane displace
ments in the same frequency band are estimated from the corresponding 
acceleration measurements through double integration and band-pass 
filtering. Finally, the two scale factors are estimated from the least- 
squares regression of the translation and displacements in the in-plane 
and out-of-plane directions, respectively. Note that the lower cut-off 
frequency of the band-pass filter should be sufficiently high to remove 
large low-frequency drifts in the acceleration-based displacement, 
whereas the upper cut-off frequency should be 1/10 of the sampling 
frequency of vision measurements [36]. 

Fig. 5. Flowchart of scale factor estimation.  
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3.1.2. Active pixel selection for phase-based algorithm 
If the displacement of the target structure is small or the target-to- 

camera distance is long, only subpixel target movements can be 
observed. Thus, the phase-based algorithm performs better than the 
feature-matching algorithm [37] and should be used for vision-based 
displacement estimation. For any given ROI, the algorithm first ex
tracts full-field phases by calculating the spatial convolution between 
the ROI and a complex Gabor filter 

(
Gv

2+jHv
2
)

[38]. Assuming pixels 
within the ROI share the same motion pattern induced by structural 
vibration, an average phase is calculated as the spatial averaging of the 
extracted full-field phases, and the phase variation compared with the 
initial average phase extracted from the 1st ROI is finally converted to 
displacement. 

Note that, unlike other computer vision algorithms that estimate 
target movement in a pixel unit, the phase-based algorithm estimates the 
target movement as phase variation. Therefore, a different scale factor is 
required in the phase-based algorithm to convert phase to displacement. 
However, it can be estimated similarly, as explained in Section 3.1.1. In 
addition to scale factor estimation, active pixels should be selected 
within the selected ROIs for the phase-based algorithm. The authors 
previously proposed an acceleration-aided algorithm for active pixel 
selection [37]; however, the algorithm cannot be applied here because 
of the mixture of in-plane and out-of-plane motions. Therefore, a new 
automatic active pixel selection algorithm is proposed that does not use 
acceleration measurements or any ad-hoc threshold. Fig. 6 shows a 
flowchart of the active pixel selection process. The full-field phase 
within the selected ROI (φi(x, y), 0 ≤ i ≤ Q) is first extracted from the 
initial vision images. The averaged phase is then calculated as 

φi =
1

M × N

∑

(x,y)∈ROI

φi(x, y), 0 ≤ i ≤ Q (15) 

where M and N denote the dimensions of the ROI. After that, a cor
relation coefficient is calculated between the averaged phase and the 
phase of each pixel, and then a correlation map is generated: 

r(x, y) =
cov(φ,φ(x, y))

σφσφ(x,y)
(16) 

where cov and σ denote the covariance and standard derivation, 
respectively. The correlation coefficient map is eventually binarized, 
and the active pixels are selected as pixels with correlation coefficients 
larger than the threshold (rT), 

r(x, y) =
{

1, r(x, y)〉rT
0, r(x, y) ≤ rT

(17) 

To avoid using any user-defined thresholds, the OSTU algorithm [39] 
is were introduced. The OSTU algorithm is a commonly used image 
thresholding algorithm. Using any given intensity threshold, an image 
can be divided into two classes. Without using any a priori knowledge, 
the OSTU algorithm automatically computes such a threshold by 
maximizing inter-class variance. In this study, the OSTU algorithm was 
applied to the correlation map, which was constructed by calculating the 
correlation coefficient between the phase of each pixel and the average 
phase of all pixels. Since the phases of active pixels represent structural 
vibration while the phases of inactive pixels are basically noise, active 
pixels will have high correlation coefficients while inactive pixels will 
have low correlation coefficients. The threshold of the correlation co
efficient (rT) can be calculated automatically using the OSTU algorithm. 

Fig. 6. Flowchart of active pixel selection: (1) extraction of full-field phases within the ROI, (2) averaging of the full-field phases to obtain an averaged phase, (3) 
calculation of correlation coefficients between the averaged phase and phases of all pixels to obtain a correlation map, and (4) thresholding of the calculated 
correlation coefficients. 

Fig. 7. Real-time 3D structural displacement estimation using an adaptive multi-rate Kalman filter: (a) overview and (b) flowchart of 3D vision-based displace
ment estimation. 
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3.2. Real-time three-dimensional structural displacement estimation 

After the initial calibrations, the structural displacement can be 
continuously estimated through the adaptive multi-rate Kalman filter- 
based fusion of asynchronous vision and acceleration measurements, 
as shown in Fig. 7(a). The 2D mixed translations are independently 
estimated from each of the two selected ROIs, and the 3D vision-based 
displacements are estimated using Equation (8), as shown in Fig. 7(b). 
The low-sampled 3D vision-based displacements are then fused with the 
high-sampled 3D acceleration measurements to obtain the final 
displacement, which has the same high sampling rate as the acceleration 
measurements. Here, the vision-based displacement in each direction 
should be independently fused with the corresponding acceleration 
measurement using an adaptive multi-rate Kalman filter. The fusion 
details are briefly explained below for displacement estimation in one 
direction, and can be easily extended to the other two directions. 

Assuming that the state estimate and acceleration measurement at 
the (k-1)th time step (x̂k− 1 and ak− 1, respectively) are available, if the 
vision image is not obtained in the period [(k − 1)Δta,kΔta], a state (x̂k) 
at the kth time step is estimated as 

x̂k = A(Δta)x̂k− 1 +B(Δta)ak− 1 (18)  

A(Δta) =

[
1 Δta
0 1

]

;B(Δta) =

[
Δt2

a

/
2

Δt

]

(19) 

Here, x̂k includes two entities, corresponding to the displacement 
and velocity estimated att = k Δta. Δta denotes the acceleration sam
pling interval. If a vision image is obtained in the period [(k − 1)Δta,
kΔta], x̂k is estimated as 

x̂k = A
(
Δtk,i

){
(I − KH)

(
A
(
Δti,k− 1

)
x̂k− 1 + B

(
Δti,k− 1

)
ak− 1

)

+ Kui
}
+B

(
Δtk,i

)
ak− 1 (20)  

Δti,k− 1 = iΔtd − (k − 1)Δta;Δtk,i = kΔta − iΔtd;H = [ 1 0 ]T (21) 

where K denotes the Kalman gain and I denotes a 2 × 2 identity 
matrix. Δtd denotes the sampling interval of the vision images. The 
derivation of Equations (18) to (21) and more details of the adaptive 
multi-rate Kalman filter can be found in the study by Ma et al. [36]. Note 
that the final estimated displacement has the same sampling rate as the 
acceleration measurement, which is higher than that of vision-based 
displacement. 

4. Experimental validation 

4.1. Indoor two-story building structure test 

4.1.1. Test setup 
The absence of a 3D shaker makes it difficult to perform tests 

considering 3D vibrations. However, in-plane (even bi-directional) 
displacement estimation has been extensively studied using monocular 
cameras, and the main difficulty in 3D displacement estimation is the 
simultaneous estimation of in-plane and out-of-plane displacements. 
Therefore, the proposed technique was first validated on a two-story 
building structure by considering simultaneous in-plane and out-of- 
plane excitations. 

Fig. 8 shows the overall configuration of the test. As shown in Fig. 8 
(a), the two-story building structure was installed on an APS-400 
shaking table placed on a DY-HY-2000 shaking table. The moving di
rections of the two shaking tables were perpendicular, and so the two- 
story building structure had two-dimensional (2D) horizontal 

Fig. 8. Overall configuration of an indoor two-story building structure test: (a) sensor setup, (b) DJI OSMO Action camera, and (c) PCB Piezotronics 3713B112G 
triaxial accelerometer for displacement estimation, (d) laser-based displacement sensor (LDS) to measure reference displacement, and (e) the FOV of the monocular 
camera and the two ROIs cropped for displacement estimation. 

Fig. 9. Detailed specifications of the accelerometer and monocular camera used in the indoor two-story building structure test.  
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vibration. A triaxial accelerometer (Fig. 8(b)) and monocular camera 
(Fig. 8(c)) were installed on the top of the two-story building structure 
for displacement estimation at the same point. Detailed specifications of 
the monocular camera and accelerometer are listed in Fig. 9. The dis
placements of the building structure were also measured using two laser- 
based displacement sensors (LDS) (Fig. 8(d)) with micrometer-level 
accuracy [40]. Acceleration and LDS data were recorded at a sampling 
rate of 100 Hz, whereas vision images were recorded at 29.97 frames per 
second (FPS) with a resolution of 2880 × 3440. Fig. 8(e) shows the FOV 
of the vision camera. Two ROIs were selected to cover parts of different 
window borders at a distance of approximately 2.7 m. Note that the 
horizontal movements of the window borders in the image plane were 
used for 2D displacement estimation in this test. To fully validate the 
displacement estimation performance of the proposed method, 15 tests 
were performed considering different combinations of in-plane and out- 
of-plane excitations, as listed in Table 1. Note that only the horizontal 

movement of two targets in the image plane was used in this test. If the 
structure also has vertical vibration, the vertical displacement can be 
easily estimated from the vertical movement of the targets in the image 
plane by repeating the same procedure. 

4.1.2. Motion separation index and scale factor estimation results 
Considering the relatively short target-to-camera distance and rela

tively large structural displacement, a feature-matching algorithm, i.e., 
the KAZE algorithm [41], was adopted to estimate displacements from 
vision measurements. The motion separation indices and scale factors 
were estimated using vision and acceleration measurements in Test 10, 
where 0.8 Hz and 1 Hz sinusoidal signals were inputted to shaking tables 
to generate in-plane and out-of-plane excitations, respectively. Fig. 10 
shows the motion separation index results. The translations estimated 
from the two ROIs were mixed using in-plane and out-of-plane motion, 
as shown in Fig. 10(a). The corresponding frequency spectra of the 
estimated translations are shown in Fig. 10(b), and the two motion 
separation indices (i.e.,ηin

H and ηout
H ) were estimated as − 0.878 and 0.934, 

respectively. Note that two ROIs were selected from opposite sides of the 
FOV and that ηout

H is a negative number. 
Fig. 11 shows the scale factor estimation results. Using the estimated 

motion separation indices, the in-plane and out-of-plane translations 
were separated from the translation estimated from the two ROIs, as 
shown in Fig. 11(a). At the same time, the in-plane and out-of-plane 
displacements were estimated from the acceleration measurements, as 
shown in Fig. 11(b). Note that both displacements and translations were 
filtered by a band-pass filter with a lower cutoff frequency of 0.5 Hz and 
an upper cutoff frequency of 3 Hz. Finally, the scale factors were esti
mated as 0.8353 pixels/mm and 1.1523 pixels/mm for the in-plane and 

Table 1 
Description of excitations in the indoor two-story building structure test.   

Out-of-plane excitations 

None Recorded 
signal 

0.3 Hz 1 Hz 2 Hz 

In-plane 
excitation 

None –- Test 1 Test 2 Test 3 Test 4 
0.2 
Hz 

Test 
5 

–- –- –- –- 

0.8 
Hz 

Test 
6 

Test 8 Test 9 Test 
10 

Test 
11 

1.5 
Hz 

Test 
7 

Test 12 Test 
13 

Test 
14 

Test 
15  

Fig. 10. Motion separation index estimation results in the indoor two-story building structure test: (a) translations extracted from ROIs 1 and 2 and (b) their fre
quency spectra and the estimated motion separation indices. 

Fig. 11. Scale factor estimation results in the indoor two-story building structure test: (a) separated in-plane and out-of-plane translations (band-pass filtered), (b) in- 
plane and out-of-plane displacements estimated from acceleration measurements (band-pass filtered), and (c) estimated scale factors between translation and 
displacement. 
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out-of-plane displacements, respectively, as shown in Fig. 11(c). Note 
that here vision and acceleration measurements were manually aligned 
using a correlation-based algorithm [34]. 

4.1.3. Displacement estimation results 
For all 15 tests, displacements were first estimated from the vision 

images using the estimated motion separation indices and scale factors. 
The vison-based displacements were then fused with the acceleration 
measurements to estimate the final displacements. Representative 
displacement estimation results, that is, displacements estimated in 
Tests 8, 13, and 15, are shown in Figs. 12-14, and corresponding 

displacement estimation errors are shown in Fig. 15. Both the in-plane 
and out-of-plane displacements estimated by the proposed method 
coincide with those measured by LDS in both frequency and time do
mains, and the root mean square errors (RMSEs) of the estimated dis
placements were less than 0.6 mm. 

The RMSEs of the displacements estimated in all 15 tests are sum
marized in Table 2. In all tests, both the in-plane and out-of-plane dis
placements were estimated accurately. The RMSEs were in the ranges of 
[0.231 mm, 0.459 mm] and [0.234 mm, 0.552 mm] for the in-plane and 
out-of-plane displacements, respectively. 

Fig. 12. Displacements estimated in Test 8 of the indoor two-story building structure test: (a) in-plane and (b) out-of-plane.  

Fig. 13. Displacements estimated in Test 13 of the indoor two-story building structure test: (a) in-plane and (b) out-of-plane.  

Fig. 14. Displacements estimated in Test 15 of the indoor two-story building structure test: (a) in-plane and (b) out-of-plane.  
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4.1.4. Effect of ROI location on scale factor estimation 
Considering that vision-based displacement estimation is estimated 

as the translation multiplied by a scale factor, a small scale factor is 
beneficial for displacement estimation. In this section, three additional 
ROIs were selected, as shown in Fig. 16(a), and the effect of the ROI 
location in the image plane on the scale factor estimation was investi
gated. The target-to-camera distances for all targets included in the five 
ROIs were approximately 2.5 m, thus focusing mainly on the effect of 
different ROI locations in the image plane. Note that this distance is the 
distance between the surface plane of the camera and the surface plane 
of the target. In addition, the measurements recorded in tests 5 and 2 
were used for the investigation, and the displacements could then be 
estimated independently from each of these five ROIs because unidi
rectional excitation was considered in these two tests. The ratios be
tween the scale factor of ROI 1 and the scale factors of all five ROIs were 
calculated. As shown in Fig. 16(b), the scale factor ratio was almost 
constant for in-plane displacement. However, the scale factor ratio was 
highly dependent on the location of the ROI in the image plane, and 
ROIs far from the image center were preferred. 

4.2. Indoor 10-m-long bridge structure test 

4.2.1. Test setup 
The proposed method was then validated on a 10-m-long beam-type 

structure, as shown in Fig. 17(a). Fig. 17(b) shows the overall setup of 
the 10-m-long beam-type structure test. The same vision camera (Fig. 17 
(c)) and accelerometer (Fig. 17(d)) used in the previous test were 
installed at the center of the span for displacement estimation at the 
same point. A Polytech RSV-150 LDV (Fig. 17(e)) was also used to 
measure the displacement, and the results were used to evaluate the 
accuracy of displacements estimated by the proposed method. The LDV 
and acceleration data were recorded at a sampling rate of 100 Hz, 
whereas vision measurements were recorded at an FPS of 29.97 Hz with 
a resolution of 2880 × 3440. Fig. 17(e) shows the FOV of the monocular 
camera and selected ROI. During the test, the structure had millimeter- 
level vertical vibration caused by a researcher jumping or walking on the 
structure, and the vertical vibration became out-of-plane vibration 
relative to the target included in the ROI. Note that the horizontal 
movement of the target in the image plane was used for the displace
ment estimation in this test (Equation (3)). In total, four different exci
tations were considered in the 10-m-long bridge structure test, and 
detailed descriptions of the excitations are summarized in Table 3. 

Fig. 15. Displacement estimation errors: (a) Test 8, (b) Test 13, and (c) Test 15.  

Table 2 
RMSEs (mm) of displacements estimated under different excitations in the indoor two-story building structure test.   

Out-of-plane excitation  

None Recorded signal 0.3 Hz 1 Hz 2 Hz  

In Out In Out In Out In Out In Out 

In-plane excitation None – – – 0.234 – 0.279 – 0.303 – 0.259 
0.2 Hz 0.231 – – – – – – – – – 
0.8 Hz 0.269 – 0.244 0.541 0.265 0.552 0.233 0.503 0.278 0.524 
1.5 Hz 0.397 – 0.403 0.398 0.459 0.440 0.431 0.424 0.444 0.440  

Fig. 16. Effect of ROI location: (a) five ROIs at almost the same distance to the camera and (b) scale factor ratio.  
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4.2.2. Estimation results 
Considering the relatively small bridge displacement, the phase- 

based algorithm was adopted for this test. The initial calibration was 
performed using accelerations and vision images recorded under exci
tation 2 in this test, and the results are shown in Fig. 18. Fig. 18(a)–(c) 
show the selected ROI, generated correlation map, and locations of the 
selected active pixel, respectively, whereas Fig. 18(d) shows the esti
mated scale factor, which is 3.5767 rad/mm. Although several outliers 
can be observed in Fig. 18(d), the scale factor was still stably estimated, 
with a high R2 value of 0.9259. 

Fig. 19 shows the displacement estimation results obtained using a 
vision camera only or using both a vision camera and an accelerometer. 
For all four excitations, displacements were estimated from vision 

measurements with an RMSE of less than 0.4 mm. Fusing vision-based 
displacement and acceleration measurements further improved the 
displacement estimation performance; however, the improvement was 
not significant. 

Additionally, the displacement estimation errors under excitation 3 
using vision images only or using both acceleration measurements and 
vision images are compared in Fig. 20. The adaptive multi-rate Kalman 
filter-based fusion significantly suppressed high-frequency errors; 
however, the errors were dominated by a low-frequency component. 
Therefore, the suppression of high-frequency errors did not significantly 
reduce the RMSE of the estimated displacement. There are two potential 
reasons for the low-frequency error. First, the recorded images had se
vere distortion problems. Though automatic calibration was performed 
through the camera’s built-in features, the distortion was not completely 
eliminated, especially in the marginal portions of the images, which may 
lead to this error. Using an industrial camera with less distortion may 
help to reduce this error. Second, the proposed technique only consid
ered structural translation and ignored structural rotation, but a tiny 
structural rotation may cause large errors. To generate relatively large 
displacements, structural rotation may be unavoidable in this test, 
which may lead to this error. 

4.3. Outdoor four-story building structure test 

4.3.1. Test setup 
Finally, the proposed method was applied to a four-story building 

structure in an outdoor setting, as shown in Fig. 21. The four-story 

Fig. 17. Overall configuration of the indoor 10-m-long bridge structure test: (a) overview of the test structure, (b) sensor setup, (c) DJI OSMO Action 1 camera, and 
(d) PCB Piezotronics 3713B112G triaxial accelerometer used for displacement estimation, (e) Polytec RSV-150 LDV used to measure reference displacement, and (f) 
the FOV of the monocular camera and the cropped ROI for displacement estimation. 

Table 3 
Description of excitations considered in the indoor 10-m-long bridge structure 
test.  

# of 
excitations 

Descriptions 

1, 2 A person slowly passed through the structure and jumped at 
random locations 

3 A person quickly moved to the center of the structure, then stayed 
static for approximately 50 s, and finally quickly left the structure 

4 A person slowly passed through the structure while jumping at 
random locations. At around 90 s, the person jumped to an adjacent 
structure and jumped back after 5 s.  

Fig. 18. Active pixel selection and scale factor estimation results using vision and acceleration measurements of excitation 2 in the 10-m-long bridge structure test: 
(a) selected ROI, (b) generated correlation map, (c) locations of the selected active pixel, and (d) estimated scale factor. 
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Fig. 19. Displacement estimation results in the 10-m-long bridge structure test: (a) excitation 1, (b) excitation 2, (c) excitation 3, and (d) excitation 4.  

Fig. 20. Displacement estimation errors under excitation 3 in the 10-m-long bridge structure test.  

Fig. 21. Overall configuration of an outdoor four-story building structure test: (a) 30 m distance between the sensor location and the selected natural target (i.e., a 
window from a nearby building), (b) sensor setup, (c) DJI OSMO Action camera and (d) ES-U2 axial accelerometer used for displacement estimation, (e) Polytec RSV- 
150 LDV used to measure reference displacement, and (f) the FOV of the monocular camera and the cropped ROI for displacement estimation. 
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building structure was installed on an APS-400 shaking table, which 
generated horizontal movement for the building structure (Fig. 21(b)). A 
DJI OSMO Action camera (Fig. 21(c)) and EpiSensor ES-U2 force-bal
ance-type uniaxial accelerometer (Fig. 21(d)) were rigidly mounted on 
the top of the building structure for displacement estimation at the same 
point. A Polytech RSV-150 LDV was used to measure the displacements 
of the building structure (Fig. 21(e)). Other experimental setups were 
the same as in the indoor 10-meter-long bridge structure test. Fig. 21(e) 
shows the FOV of the vision camera. An ROI was selected to cover a 
window at a distance of approximately 30 m, and the horizontal 
movements of the window borders in the image plane were used for 
displacement estimation. Five different excitation signals were inputted 
to the shaking table in this test: (1) actual recorded bridge vibration 
signal, (2) 0.1 Hz sinusoidal signal, (3) 0.3 Hz sinusoidal signal, (4) 0.5 
Hz sinusoidal signal, and (5) 1 Hz sinusoidal signal. 

4.3.2. Initial calibration results 
Considering the long target-to-camera distance, the phase-based al

gorithm was adopted for this test. Fig. 22 shows the active pixel selection 
results using accelerations and vision images recorded under a 1 Hz si
nusoidal signal excitation in the outdoor four-story building structure 
test. Fig. 22(a)–(c) show the selected ROI, generated correlation map, 
and locations of the selected active pixels, respectively, while Fig. 22(d) 
shows representative phases extracted from the active and inactive 
pixels. A 1 Hz sinusoidal wave was observed from the phase of the active 
pixel, but was not observed from the phase of the inactive pixel. 

Fig. 23 shows the scale factor estimation results using all pixels and 
active pixels selected by the proposed algorithm. The average phase of 
the active pixels has a larger amplitude and lower noise level than the 

average phase of all pixels, as shown in Fig. 23(a). Therefore, a smaller 
scale factor was estimated using active pixels with a better goodness of 
fit (i.e., a larger R2 value) than that obtained using all pixels. The esti
mated scale factors using all pixels and active pixels were 39.2 mm/rad 
and 16.14 mm/rad, respectively. 

4.3.3. Displacement estimation results 
To more intuitively show the advantage of using active pixels 

selected by the proposed algorithm than using all pixels, the displace
ments estimated using all pixels and active pixels are compared in both 
frequency and time domains in Fig. 24 under all five excitations, and the 
corresponding errors are compared in Fig. 25. When all pixels were used, 
displacements were estimated with a maximum RMSE of 2.59 mm and 
minimum RMSE of 1.32 mm. More accurate displacements were esti
mated using active pixels, and the RMSEs of the estimated displacements 
were less than 1 mm in all cases. 

The displacement estimation performance can be further improved 
by fusing vision-based displacement with acceleration using an adaptive 
multi-rate Kalman filter. Considering that the displacement estimation 
performance using only vision images was already sufficiently good, the 
RMSE reduction achieved by the adaptive multi-rate Kalman filter-based 
fusion was not significant. However, the RMSEs were still reduced by up 
to 16% (Table 4). Note that the Kalman filter was used to improve 
displacement estimation accuracy and increase the sampling rate of the 
estimated displacement. If only low-frequency displacement estimation 
is needed and short-distance targets are available for the camera, the use 
of the Kalman filter may not be necessary. 

Additionally, the target size change under 1 Hz sinusoidal excitation 
was estimated using a feature-matching algorithm, and the results are 

Fig. 22. Active pixel selection results in the outdoor four-story building structure test: (a) selected ROI, (b) generated correlation map, (c) locations of selected active 
pixels, and (d) phases of an active pixel and an inactive pixel. 

Fig. 23. Scale factor estimation results in the outdoor four-story building structure test: (a) averaged phase of all pixels and all active pixels and (b) scale factors 
estimated using all pixels and all active pixels. 
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shown in Fig. 26. Owing to the long target-to-camera distance, the 
estimated target size change did not have a 1 Hz sinusoidal wave, 
indicating difficulty in estimating the out-of-plane structural displace
ment from the target size change. 

5. Conclusions 

This paper describes a structural displacement estimation method 
that fuses measurements from a monocular camera and an accelerom
eter mounted on a target structure. A computer vision algorithm and 
adaptive multi-rate Kalman filter are integrated to efficiently estimate 
high-sampling displacements from low-sampling vision measurements 
and high-sampling acceleration measurements. All parameters associ
ated with the computer vision algorithm are automatically calibrated, 
and the proposed method is suitable for in-plane, out-of-plane, and 3D 
displacement estimation. A two-story building structure test was first 

Fig. 24. Out-of-plane displacements estimated using all pixels and active pixels in the outdoor four-story building structure test: (a) actual recorded bridge vibration 
signal, (b) 0.1 Hz, (c) 0.3 Hz, (d) 0.5 Hz, and (e) 1 Hz. 

Fig. 25. Displacement estimation errors using all pixels and active pixels in the outdoor four-story building structure test: (a) actual recorded bridge vibration signal, 
(b) 0.1 Hz, (c) 0.3 Hz, (d) 0.5 Hz, and (e) 1 Hz. 

Table 4 
Comparison of displacement estimation performance (i.e., RMSE) using vision 
measurement only and the fusion of vision and acceleration measurement.  

Excitations Vision only 
(mm) 

Vision + Acceleration 
(mm) 

Difference 
(%) 

Recorded bridge 
vibration signal  

0.89  0.85  4.49 

0.1 Hz sinusoidal  0.76  0.75  1.32 
0.3 Hz sinusoidal  0.76  0.64  15.79 
0.5 Hz sinusoidal  0.76  0.66  13.46 
1 Hz sinusoidal  0.71  0.60  15.50 
Average  0.78  0.72  7.69  
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conducted with bidirectional excitations, and the in-plane and out-of- 
plane displacements of the structure were simultaneously estimated 
using the proposed method with RMSEs below 0.6 mm. The proposed 
method was then applied to a 10-m-long bridge structure. Although the 
structure had tiny out-of-plane displacements of a few millimeters, they 
were still well estimated with RMSEs of less than 0.4 mm. Finally, a four- 
story building structure test was conducted. Even when a target at a 
distance of approximately 30 m was used, the proposed methods accu
rately estimated the displacements, with RMSEs below 0.9 mm. How
ever, there are still the following issues that need to be addressed in 
future works:  

(1) when estimating the structural displacement using a vision 
camera installed on a target structure, even a tiny structural 
rotation may cause large errors in the estimated structural dis
placements. Future studies should investigate the simultaneous 
estimation of 3D displacements and 3D rotations.  

(2) the proposed technique aims at real-time structural displacement 
estimation. However, because the accelerometer and camera 
used in this study did not support real-time data streaming, ac
celeration and vision measurements were separately recorded 
and then post-processed on the desktop PC. We are now devel
oping a displacement sensor module by integrating a photode
tector for vision imaging, an accelerometer, and a 
microcontroller into a single unit. After the hardware develop
ment, the real-time estimation ability of the proposed technique 
needs to be further validated. 
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