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Abstract 

Metal additive manufacturing (AM) technologies, such as 

laser direct energy deposition (DED), have attracted 

attention in the construction industry. However, the 

current track geometry inaccuracy in the DED process, 

especially at corners with sharp turns, is a key barrier to 

the adoption of this advanced technology. To tackle 

geometry inaccuracy and achieve geometry control in the 

DED process, analytical relationships between geometry 

attributes and printing parameters for single-layer 

deposition have been developed. However, the layer 

height in multi-layer deposition may not be constant 

during the printing process, and the geometry estimation 

for multi-layer deposition is still problematic. Moreover, 

geometry estimation for corners in complex shapes has 

not been studied. In this study, a real-time corner height 

estimation technique for multi-layer track-with-corner 

deposition is proposed. The experimental results show 

that the proposed technique can estimate the corner height 

with an average RMSE of 0.042 mm for corners with 

different angles. 

Introduction 

Metal additive manufacturing (AM) technologies have 

developed rapidly since their introduction in the early 

1980s because of their powerful manufacturing 

capability. According to the American Society for Testing 

and Materials (ASTM) standard, the two major groups of 

metal additive manufacturing technologies are directed 

energy deposition (DED) and powder bed fusion (PBF) 

(ASTM Committee, 2012), both of which have been 

widely applied in various fields such as the aerospace, 

automobile, and biomedical industries (Milewski, 2017). 

In recent years, DED has gained attention as a viable 

manufacturing method in the construction industry in 

which metallic materials are commonly adopted in 

distinctive and complex designs (Buchanan and Gardner, 

2019). Traditional techniques to produce metallic 

components, such as hot rolling, cold forming, and 

extrusion, often lead to regular prismatic elements 

(Fröhlich and Schulenburg, 2003), which limits the 

potential use of metallic materials in construction and 

design. DED can serve as a complementary but 

irreplaceable technique to produce components with 

almost any shape with high accuracy.  

However, geometry quality problems may occur during 

DED process especially when predefined constant 

printing parameters (nominal printing parameters) are 

used in the whole printing process. Recent studies have 

shown that the as-built deposition height is not always 

consistent with the as-designed deposition height when 

using constant printing parameters (Chabot et al., 2019; 

Tyralla et al., 2020; Vandone et al., 2018; Xiong and 

Zhang, 2014). This can be ascribed to three reasons. First, 

the value of nominal printing parameters and the 

corresponding as-designed track height are normally 

determined based on experience, which might not be 

accurate (Shim et al., 2016). Second, the track height is 

related to process parameters such as the heat emission 

conditions, inter layer temperatures, and surface quality of 

previous layers, those parameters might change at 

different layers (Li et al., 2021). Third, since DED process 

is quite sensitive to printing parameters such as laser 

power, powder feed rate, laser traverse speed and gas flow 

rate, a slight change of these parameters might lead to 

track height variation. Moreover, when track height 

deviates from as-designed value, the nozzle to top surface 

distance (NTSD) also deviates from specified value and 

the printing condition changes, result in more and more 

serious height discrepancy (Xiong and Zhang, 2014). In 

practice, if the printing system is a stable system so that 

the variation of printing parameters is within an 

acceptable range and there’s no sudden disturbance on the 

printing parameters, most track height variations occur at 

discontinuities such as corner points, because the traverse 

speed changes at corner points (Pereira et al., 2021; 

Thakkar and Sahasrabudhe, 2020; Woo et al., 2019). 

To ensure the performance of the final product, it is 

important to manage the geometry quality of deposited 

components. Towards geometry quality management, one 

important part is to identify the relationship between 

process parameters and geometry attributes, as illustrated 

in Figure 1, a proposed geometry management framework 

in AM process. A common AM task includes four parts, 

AM design, AM input, AM process and AM product. In 

AM design stage, product specifications such as material 

properties, quality characteristics and accuracy 

requirements, are first identified by employer, as 

reference for determining as-designed track geometry and 

toolpath. Afterwards, nominal printing parameters can be 

decided as AM input based on as-designed track 

geometry, toolpath and the relationship between printing 

parameters and geometry attributes. During AM process, 

the process parameters including real printing parameters 

as well as several influencing factors such as melt pool 



 

 

size, interlayer temperatures, and previous layer 

conditions, etc., work together to produce the as-built 

track geometry, and finally the AM product is generated 

by combining all as-built tracks and thereby form the 

product geometry. To manage geometry quality, a control 

system should be considered into the common AM task, 

where the relationship between process parameters and 

track geometry attributes will be very important since it 

determines the prediction of control target. When there is 

geometry inconsistency, the nominal printing parameters 

can be adjusted through the established relationship to 

ensure the as-built track geometry. 

 
Figure 1: Geometry quality management in AM process 

The relationship between geometry attributes and process 

parameters has been studied in previous literature. 

Empirical models, physics-based models together with 

numerical simulation, and machine learning algorithms 

are used to predict the track geometry from printing 

parameters. In early studies, the geometry estimation 

approaches were limited to empirical models. Afterward, 

to gain a better understanding of the complex laser-

material interaction, physics-based models were 

developed. However, the physics-based models might 

provide worse geometry estimation accuracy compared 

with empirical models. Besides, numerical simulation 

using physics-based models takes a lot of time, making it 

impossible to be applied in online geometry control. 

Recent studies considered machine learning algorithms. 

Wang et al established both physics-based modeling and 

Gaussian Process Regression (GPR) model to predict 

track width and height (Wang et al., 2020). The result 

shows that the GPR model achieves much smaller 

prediction errors than physic-based modeling for track 

width and height, however this GPR model was 

established using simulated data from physic-based 

modeling thus the effectiveness was not validated on 

deposition experiments. In addition, although geometry 

problems often occur at corners and some studies were 

related to corner problems (Badarinath and Prabhu, 2021; 

Comminal et al., 2019; Kono et al., 2018; Ribeiro et al., 

2020), there has no study focusing on the corner height 

estimation in DED process. 

In this paper, the corner height estimation of multi-layer 

track-with-corner deposition has been achieved in real-

time using ANN and measured traverse speed at the 

corner. Compared with current studies of relationship 

establishment methods, several machine learning 

algorithms have been compared and evaluated. Based on 

the evaluation results, an initial model for layer height 

estimation of multi-layer straight-track deposition using 

artificial neural network has been developed, considering 

not only three principal printing parameters (laser power, 

traverse speed, and powder feed rate), but also process 

parameters, such as layer number, previous layer height, 

etc. An optimal model has been constructed by updating 

the initial model in-situ when there has corner data with 

measured traverse speed been obtained. Finally, real-time 

corner height estimation is achieved using optimal model 

and measured corner speed. Through experiment, the 

relationship of corner height increase and corner traverse 

speed decrease in DED process has been quantified. 

Experiment results validated that the developed corner 

height estimation method can be applied to corners with 

different angles. The paper is organized as follows. 

Section 2 describes the experiment setup, including DED 

system, measurement using laser line scanner and vision 

camera, and the preliminary data analysis. Section 3 

explains the methodology of developing real-time corner 

height estimation technique, which comprises offline 

model selection, in-situ optimal model construction and 

real-time corner height estimation. Sections 4 provide the 

experimental results and discussions. Section 5 concludes 

the paper by presenting summary, limitations, and future 

work. 

Experimental setup  

Description of Directed Energy Deposition System 

and test specimens 

In this study, a commercial DED printer MX-400 from 

Insstek Inc. was used with 1070nm Ytterbium fiber laser 

system that can generate a maximum laser power of 1 kW. 

The powder carrier gas and shielding gas were argon gas 

with a flow rate of 2.5 L/min and 5.0 L/min, respectively. 

During deposition, the distance between nozzle and the 

top surface, named as nozzle to top surface distance 

(NTSD), should be 9 mm to achieve optimal focus of 

printing laser and powder distribution, and the focal laser 

beam diameter is 800 µm. Materials used for deposition 

was stainless steel 316L powder with average particle size 

of 100 µm and the substrate used same material with 100 

mm × 50 mm × 10 mm dimension. Based on single-layer 

straight-track deposition trials, nominal printing 

parameters in the ranges of laser power between 300 and 

900 W, traverse speed between 5 mm/s and 15 mm/s, and 

feed rate between 3 g/min and 4 g/min, were all suitable 

to generate layers with smooth appearance.  

Two types of specimens were fabricated, multi-layer 

straight-track deposition and multi-layer track-with-

corner deposition, including multi-layer L-shape 

deposition and multi-layer trapezoid-shape deposition. 

Specimens were manufactured under varying deposition 

conditions as listed in Table 1. Several different values are 

selected for each printing parameter within the acceptable 

range, and the varying deposition conditions were 

different combinations of nominal printing parameter 



 

 

values. For multi-layer straight-track deposition, a dataset 

of 360 (4 × 3 × 3 × 10) samples were generated, including 

combinations of four laser power values of 300, 500, 700, 

900 W, three traverse speed values of 5, 10, 15 mm/s, 

three feed rate values of 3.2, 3.6, 4 g/min and ten-layer 

number values. For multi-layer track-with-corner 

deposition, a specimen of L-shape deposition with 90-

degree corner and a specimen of trapezoid-shape 

deposition with 45-, 90-, and 135-degree corners were 

manufactured. 

Vision camera setup and measurement 

An artificial target was attached to the nozzle, and a vision 

camera (SONY α6400) was installed 1 m away from the 

target to trace the target movement, which is the 

movement of nozzle (Figure 2). The camera records 

images and a normalized cross-correlation (NCC)-based 

template matching was adopted here for target tracking 

(Ma et al., 2020). The speed of the nozzle was calculated 

using the target movement between two consecutive 

images. 

 
Figure 2: Experiment setup 

Laser line scanner setup and measurements 

To obtain geometry information of the deposited object 

during DED process, a laser line scanner (Micro-Epsilon 

scanCONTROL 3000-25/BL) was attached on the nozzle 

of the DED printer and move along with the nozzle during 

deposition. More details can be found in (Binega et al., 

2022).  

The laser line scanner is calibrated so that the projected 

laser line was perpendicular to the printing direction to 

capture the cross-section profiles of the deposited object. 

Figure 3 shows typical cross-section profiles of different 

specimens. For each profile, a region of interest (ROI) 

points is selected as the points of printed part and the 

position of ROI is determined through calibration. The 

height of each profile is defined as the average height of 

the ROI points within the top 90th percentile of the height 

values. For multi-layer straight-track deposition, the 

deposition height (DH) at a specific layer was the average 

height of profiles from this layer. For multi-layer track-

with-corner deposition, the deposition height of straight 

part is defined same as in multi-layer straight track. While 

the deposition height of each corner at a specific layer was 

the average height of the corresponding corner profiles 

from this layer, and the corner profiles were profiles 

within 1mm distance from each corner position. 

 
Figure 3: Typical profiles from lase line scanner 

Research Methodology 

Overview of proposed method  

According to previous literature and experimental 

practice, it is common to experimentally determine the 

relationship between the printing parameters and the layer 

height before printing. Therefore, the general idea of our 

proposed corner height estimation technique is to make 

use of the relationship study from multi-layer straight-

track deposition and expand its application to multi-layer 

track-with-corner deposition. The proposed technique for 

corner geometry measurement consists of three parts as 

shown in Figure 4. First part is offline model selection 

using multi-layer straight-track data, where candidates of 

machine learning algorithms are compared using multi-

layer straight-track data with several candidates of feature 

combinations. An initial model is determined with 

selected algorithm and feature combination and used as a 

base model for corner height estimation. Since the data 

distribution of corner data is different with the data 

distribution of straight-track, the idea of the second part is 

to update the initial model when an amount of the multi-

layer track-with-corner data with speed correction is 

obtained in-situ. Finally, an optimal model is determined, 

and the third part is to estimate corner height during multi-

layer track-with-corner deposition in real-time. 

Offline model selection 

(1) Input features and output target 

The output target is layer heigh, which is defined as the 

increment of deposition height while a new layer is 

deposited. For model training, the layer height as output 

target is obtained from laser line scanner, calculated as the 

difference of deposition height between neighboring 

layers. 

The input features include laser power, traverse speed, 

feed rate, layer number, nozzle to top surface distance, 

previous deposition height and previous layer height. 

Since DED is a process of melting and solidifying metal 

powder with energy, the factors directly related to powder 

and energy should have large importance to track 

geometry. Hence, the three main printing parameters that 

determine track geometry are laser power, feed rate and 

traverse speed, proved by a lot of experiments and 



 

 

numerical analysis in previous literatures (Lee and 

Farson, 2016). These three printing parameters are 

selected as input features in this study. Apart from the 

three main printing parameters, there are other parameters 

that might provide useful information in layer height 

estimation. A lot of studies do not consider layer number 

and conduct layer height estimation for single track using 

three main printing parameters and the results have been 

used for layer height control. However, the layer height 

might not be constant and have a trend to become smaller 

during multi-layer deposition since the heat cumulates as 

more layer deposited. Besides, nozzle to top surface 

distance has been proved to influence the geometry since 

it changes the printing conditions. Since the role of these 

parameters is uncertain and might be redundant for our 

model, feature selection is conducted. Different input 

feature combinations are generated and compared in the 

next step to select the best feature combination. 

(2) Model training and evaluation 

Six machine learning algorithms are trained and 

compared in this study, including Linear Regression, 

second order Multivariate Polynomial Regression (MPR), 

ANN, Decision Tree, Random Forest and AdaBoosting. 

Linear regression is the simplest and most commonly used 

algorithm for regression problems. The estimation model 

can be represented in equation (1), where x= [x1, x2… xD] 

is the input features and y are the output target. Early 

literatures mostly adopt this approach but suffer from low 

estimation accuracy since the relationship between 

printing parameters and layer height are nonlinear. 

Multivariate Polynomial Regression could represent 

nonlinear relationship and thus adopted and compared 

with other algorithms. The estimation model using second 

order MPR is shown in equation (2). 

𝑦(𝑥,𝑤) = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷                   (1) 

𝑦(𝑥,𝑤) = 𝑤0 + ∑ 𝑤𝑘𝑥𝑘
𝐷
𝑘=1 + ∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝐷
𝑗=𝑖

𝐷
𝑖=1                  

(2) 

Except traditional regression algorithms, ANN model has 

strong capability to approximate nonlinear relationships 

and has been widely used in system identification in 

intelligent control field (Bavarian, 1988). A typical ANN 

model consists of an input layer, an output layer and one 

or more hidden layers, each hidden layer contains several 

hidden neurons (Bishop, 2006). The adjustment of 

hyperparameters is an essential part in the training of 

machine learning models and significantly influences the 

model performance. The main hyperparameters of ANN 

model include number of layers, number of neurons, L2 

penalty parameter, learning rate, solver, and activation 

function. Selection of the number of layers has been 

discussed in (Haykin, 2009). An ANN model with one 

hidden layer is capable to approximate any nonlinear 

relationship, but model with deeper hidden layers could 

have better ability to fit the function, although at the 

expenses of introducing overfitting problem and 

increasing training difficulties. Similarly, small number of 

neurons may lead to underfitting while too many neurons 

will create overfitting problem and increase training time.  

Another class of algorithms for solving regression 

problems is the tree algorithm which is based on decision 

tree. Regression tree from Classification and Regression 

Figure 4: Overview of proposed method 

 



 

 

Trees (CART) is adopted as d ecision tree algorithm in 

this study, in which the optimal split point is selected by 

least square method. The hyperparameters considered to 

be tuned are the maximum depth of tree (max_depth) and 

the minimum number of samples required to split an 

internal node (min_samples_split). Random forest is an 

algorithm based on decision tree, which uses bootstrap to 

select samples from dataset and randomly selects multiple 

features from all features to determine the best splitting 

point when build one CART decision tree. Several CART 

trees are built to form a forest and finally determine the 

prediction by voting. The hyperparameters considered to 

be tuned in our study include the two hypermeters of 

decision tree, maximum depth of tree (max_depth) and 

the minimum number of samples required to split an 

internal node (min_samples_split), and the number of 

trees in the forest (n_estimators). Adaboost is an iterative 

algorithm whose main idea is to train different classifiers 

(weak classifiers) for the same training set, and then to 

aggregate these weak classifiers to form a stronger final 

classifier (strong classifier). The hyperparameters 

considered to be tuned include the aforementioned two 

decision tree parameters and the weight applied to each 

classifier at each boosting iteration (learning_rate). 

For each machine learning algorithm and each feature 

combination, the multi-layer straight-track data is divided 

into train set and test set. Hyperparameter optimization is 

conducted using the train set by k-fold cross-validation, 

where the train set is further divided into train and 

validation set. After determining the hyperparameters of 

each machine learning algorithm under each feature 

combination, the test set is used to evaluate the 

performance by calculating the Root Mean Square Error 

(RMSE) between estimated layer height and measured 

layer height. 

In-situ construction of optimal model and Real-time 

corner height estimation during multi-layer track-

with-corner deposition 

When it comes to corner height estimation, our test data 

set becomes corner data. First, a speed correction should 

be conducted for corner data since the actual traverse 

speed at corner is not same as the nominal traverse speed. 

Second, considering the distribution of straight track data 

and corner track data might be different, directly applying 

the initial model to corner height estimation result in bad 

performance. Therefore, the initial model is updated when 

there is a batch of corner data obtained in-situ. In practice, 

the in-situ construction of optimal model can be 

conducted regularly when a certain amount of new corner 

data was acquired, so that the performance of our model 

will continue to improve. 

After obtaining the optimal model, the real-time corner 

height estimation can be conducted. The real-time 

measured traverse speed is used in speed correction and 

the geometry estimation is conducted using optimal 

model. 

Experiment results 

Results of offline model selection 

An initial model should be selected with the smallest 

RMSE by comparing different algorithms with different 

feature combinations. The three principal printing 

parameters are determined to be the input features while 

the other four process parameters are to be determined, 

thus there are in total 16 feature combinations considering 

all possible cases. Figure 5 shows the RMSE of six 

algorithms with representative feature combinations. For 

all six algorithms, considering only three principal 

printing parameters will give the worst estimation 

performance compared with considering more features. 

For all feature combinations, linear regression algorithm 

performs notably worse than the other five algorithms that 

can represent non-linear relationship. In addition, the best 

feature combination for all algorithms is hard to determine 

since different algorithms may achieve its best 

performance with different feature combinations. 

 
Figure 5: RMSE of layer height estimation of multi-layer 

straight-track deposition with different algorithms and feature 

combinations 

Finally, the model with smallest RMSE (0.019mm) is 

selected as the initial model, which is ANN model with 

three principal printing parameters (laser power, feed rate 

and traverse speed) and three other parameters (preLH, 

layer number and preDH). Figure 6 shows the layer 

estimation performance of the initial model on test 

samples, which achieves RMSE of 0.019mm. 

 
Figure 6: Layer height estimation of multi-layer straight-track 

deposition using optimal model 

Results of in-situ construction of optimal model 

The in-situ construction of optimal model is validated on 

18-layer L-shape deposition. The collected data from 18-

layer L-shape deposition is divided into validation set and 

test set. The optimal model is determined by adjusting 

hyperparameters of the initial model using validation set 

by Bayesian optimization. The performance of optimal 

model is validated on test set. Figure 7 (a) shows the 

performance of the initial model and Figure 7 (b) shows 



 

 

the performance of optimal model, where the optimal 

model has lower RMSE. 

 
Figure 7: Example of comparing (a) Corner height estimation 

using initial model and (b) Corner height estimation using 

optimal model 

Results of real-time corner height estimation results 

After determining the optimal model, real-time corner 

height estimation has been conducted on five specimens 

with different printing parameters as listed in Table 1. The 

performance of speed correction has been validated by 

comparing the estimated corner height with real-time 

measured traverse speed and the estimated corner height 

with designed traverse speed at different corners. The 

improvement of integrating speed correction is defined in 

equation (3), where RMSE(Vreal) is the RMSE of corner 

height estimation using measure traverse speed and 

RMSE(Vdesign) is the RMSE of corner height estimation 

using as-designed traverse speed.  

Improvement =
RMSE(Vreal)-RMSE(Vdesign)

Average layer height
                 (3) 

Table 1: Specimens for real-time corner height estimation 

  Power  

(W) 

Speed  

(mm/s)  

Feed rate 

(g/min)  

Number of 

Layer 

Trapezoid-shape 

1 700 10 3.6 18 

2 500 10 3.6 18 

3 600 15 4 18 

4 500 10 3.2 18 

5 700 15 3.6 18 

Table 2 shows the corner height estimation results using 

optimal model and the improvement of integrating speed 

correction. As can be seen from Table 2, the improvement 

of speed correction was validated since RMSE(Vreal) is 

always smaller than RMSE(Vdesign). For corners with 

sharper angles, the speed decease and the layer height 

increase are more serious and thus the improvement of 

speed correction is more remarkable. 

 

Table 2: Corner height estimation using optimal model 

Trapezoid-shape 
RMSE (mm) 

Improvement 
Vreal Vdesign 

Corner 135° 

1 0.036 0.042 2.7% 

2 0.047 0.051 2.3% 

3 0.040 0.109 32.3% 

4 0.052 0.058 3.1% 

5 0.039 0.046 3.4% 

Corner 90° 

1 0.028 0.044 8.1% 

2 0.035 0.053 9.5% 

3 0.024 0.111 40.1% 

4 0.032 0.056 12.7% 

5 0.030 0.051 10.1% 

Corner 45° 

1 0.056 0.104 24.9% 

2 0.075 0.112 18.8% 

3 0.049 0.181 61.4% 

4 0.040 0.110 36.2% 

5 0.048 0.113 32.2% 

Average RMSE 0.042 
 

  

 

 
Figure 8: Example of corner height estimation of corner 45° on 

trapezoid-shape deposition using optimal model. (a) reference 

and estimated corner height with measured traverse speed, (b) 

reference and estimated corner height with as-designed 

traverse speed, and (c) reference and estimated deposition 

height at corner 

Figure 8 shows an example of corner height estimation on 

trapezoid-shape deposition using the optimal model 

(corner 45°, sample 4). The blue line is reference height 

measured by laser line scanner, the orange line is the 

estimation using as-designed speed, and the green line is 

estimation using as-designed speed. It is evident that the 

corner layer height estimation result using measured 

traverse speed is much better than using as-designed 

speed as presented in Figure 8 (a) and (b). Furthermore, 

Figure 8(c) shows the estimated and reference deposition 

height, which is cumulation of estimated and reference 

layer height, respectively. It can be seen that the estimated 

deposition height using measured speed is quite close to 

the reference deposition height. This indicates that 

although there still has a RMSE of 0.042 mm on layer 



 

 

height estimation at corner using measured speed, the 

error did not cumulate as more layers deposited. 

 

Conclusions 

In this study, a real-time corner height estimation 

technique for multi-layer track-with-corner deposition has 

been developed using laser line scanner, vision camera 

and artificial neural network. Reference layer height can 

be obtained using laser line scanner and traverse speed at 

corners can be measured by vision camera with templated 

matching-based computer vison algorithm. The corner 

traverse speed decrease and corner height increase has 

been observed and quantitively analyzed. An initial model 

has been constructed using multi-layer straight-track data 

by evaluating different machine learning algorithms with 

different feature combinations. An optimal model for 

corner height estimation has been constructed in-situ by 

updating the initial model using corner data with 

measured traverse speed. Real-time corner height 

estimation is conducted through trapezoid-shape 

deposition with five samples and the experimental result 

validated the effectiveness of our proposed technique.   

There are some limitations and future work of this study. 

First, only three different angles (45°, 90° and 135°) are 

validated using the proposed method, a more general 

analysis of all angles should be considered in future study. 

Besides, this study only considered deposition using 

SS316L, and the adaptability of the proposed method to 

other materials and validation experiments might be 

needed.  
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