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A B S T R A C T   

Metal additive manufacturing (AM), such as laser direct energy deposition (DED), is gaining popularity because 
of its capability in manufacturing near-net-shaped complex components for various industrial applications. 
However, the geometry control during the DED process, especially at corners with sharp turns, remains a 
daunting task. To achieve geometry control, geometry estimation to identify the relationship between the process 
parameters and geometry attributes is vital. In this study, a real-time layer height estimation technique is 
developed for DED using a laser line scanner, vision camera, and domain adaptive neural networks (DaNN). An 
emphasis is placed on layer height estimation at sharp corners during multi-layer deposition. First, multi-layer 
straight-line deposition data is collected using laser line scanner and an initial layer height estimation model 
is constructed. Then, to efficiently achieve layer height estimation during corner deposition, an DaNN model is 
established using the multi-layer straight-line deposition data and the constructed initial model. The actual 
traverse speed at the corners is measured using a vision camera and fed into the DaNN model as one of input 
features. Finally, the DaNN model is updated online to further improve estimation accuracy during corner 
deposition. The proposed technique has been validated by DED experiments and the results show that the layer 
height can be estimated in 0.018 s with an average accuracy of 25.7 µm when multiple layers with an average 
height of 250 µm are deposited at corners with different angles.   

1. Introduction 

Advantages in metal additive manufacturing (AM) technologies have 
contributed to its rapid development in the last decades. However, ge
ometry control of in Metal AM is still one of the main challenges to 
achieve zero-defect manufacturing (Caiazzo et al., 2022). According to 
the American Society for Testing and Materials (ASTM) standard (ASTM 
Committee, 2012), metal AM technologies can be classified as either 
powder bed fusion (PBF) or directed energy deposition (DED). PBF en
ables more precise control of the geometry of a printed component than 
DED, but the size of printable components is limited. On the other hand, 
DED is more attractive for manufacturing large-scale components, but 
its geometry is more difficult to control. 

For example, the as-built layer height is often different from the as- 
designed layer height even when constant printing parameters are 

used (Tyralla et al., 2020; Xiong and Zhang, 2014; Vandone et al., 2018; 
Chabot et al., 2019; Liu et al., 2021). This discrepancy results from the 
fact that the layer height depends on uncontrollable process parameters, 
such as interlayer temperatures, and surface roughness of the layers, as 
well as other controllable process parameters. Moreover, when the layer 
height varies from the as-designed value, the nozzle to the top surface 
distance (NTSD) also deviates from the specified value and this devia
tion exacerbates the layer height discrepancy (Xiong and Zhang, 2014). 
Such layer height discrepancy often occurs at discontinuities, such as 
corner points, because of the sudden traverse speed change at these 
points (Woo et al., 2019; Thakkar and Sahasrabudhe, 2020; Pereira 
et al., 2021). 

For geometry control of deposited layers during a DED process, it is 
important to identify the relationship between process parameters and 
geometry attributes. The process parameters include (1) controllable 
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parameters, often called printing parameters, such as traverse speed and 
laser power and (2) uncontrollable parameters such as interlayer tem
peratures and the previous layer height. The relationship between the 
process parameters and the geometrical attributes has been studied 
based on physics-based or data-driven modeling. Physics-based models 
were developed to better understand the relationship between the pro
cess parameters and the geometric attributes, considering the powder 
material transportation (Sun et al., 2020), powder catchment (Alya and 
Singh, 2021), energy transfer (Wang et al., 2016), laser-material inter
action (Bayat et al., 2021), and thermomechanical effect (Walker et al., 
2020). However, the geometry estimation accuracy based on 
physics-based modeling is not sufficiently good. For example, Wirth and 
Wegener (2018) used physics-based finite element simulation for DED in 
order to predict track geometry of single-layer deposition. The 
maximum estimation error of the track geometry was 14% and the 
average estimation errors of the layer width and height were below 
5.1%. Ertay et al. (2020) proposed a physics-based model considering 
complex local laser-material interaction and the global thermal history 
to predict the track geometry for deposition with 2D/3D toolpaths. The 
maximum layer height estimation error from this physics-based model 
was about 17% for single-layer multi-track deposition. Furthermore, 
geometry estimation based on physics-based modeling requires nu
merical simulation, which is often time consuming and not suitable for 
real-time geometry control. 

To tackle these issues, alternative data-driven modeling has been 
pursued. Davim et al. (2008) estimated the width, height, and depth of a 
single track by constructing a multivariate regression model using the 
laser power, traverse speed, and powder feed rate as inputs. Liu et al. 
(2018) adopted a nonlinear analytical function to estimate the rela
tionship between the layer width and height and the laser power, tra
verse speed, and powder thickness for single-layer deposition. Wang 
et al. (2020) constructed both physics-based and Gaussian process 
regression (GPR) models to predict the layer width and height, and 
much better prediction accuracy was achieved using the GPR model. 
Most data-driven modeling studies considered three principal printing 
parameters: the laser power, traverse speed, and powder feed rate for 
geometry estimation of single-layer deposition. In addition, although 
geometry control often becomes an issue at corners (Kono et al., 2018), 
the majority of the previous studies focused on the geometry estimation 
of straight-line deposition rather than corner deposition. 

In our study, the layer height (LH) is estimated instantaneously 
during multi-layer corner deposition using a domain adaptive neural 
network (DaNN). First, an initial layer height estimation model is con
structed using laser power (P), traverse speed (V), powder feed rate (Fr), 
layer number (N), previous layer height (preLH), previous deposition 
height (preDH) and nozzle to top surface distance (NTSD) as input fea
tures and trained using data from multi-layer straight-line deposition. 
The LH, preLH, preDH, and NTSD are obtained from a laser line scanner. 
Then, to achieve layer height estimation during corner deposition which 
includes both the straight-line part and the corner part, a DaNN model is 
proposed based on the constructed ANN model, in which the actual 
traverse speed at the corners is measured using a vision camera and fed 
as an input feature for the DaNN model establishment. Finally, an online 
updating strategy of the DaNN model is proposed to further improve 
estimation accuracy during corner deposition and validated for real- 
time layer height estimation. This study has four major contributions: 
(1) a layer height estimation model is developed by considering not only 
three principal printing parameters (P, V, Fr) but also additional process 
parameters (N, preLH, preDH, NTSD); (2) a DaNN model is developed to 
achieve layer height estimation during corner deposition; (3) online 
DaNN model updating is achieved to further improve the layer height 
estimation accuracy during corner deposition; and (4) real-time layer 
height estimation for corners with different angles is validated. 

The remainder of this paper is organized as follows. Section 2 pre
sents the proposed real-time layer height estimation technique, which 
comprises the construction of the layer height estimation model using 

multi-layer straight-line data, development of layer height estimation 
model for multi-layer corner deposition and real-time layer height 
estimation for multi-layer corner deposition. Section 3 describes the 
experimental setup. The experimental results and conclusions are pro
vided in Sections 4 and 5, respectively. 

2. Methodology 

2.1. Overview of proposed technique for real-time layer height estimation 

In current practice, the relationship between the process parameters 
and the layer height during DED is mostly estimated based on trial-and- 
error experiments. This study establishes the relationship from straight- 
line deposition experiments and uses the established relationship to help 
estimate the layer height during corner deposition. The proposed tech
nique consists of three steps, as shown in Fig. 1. In the first step, multi- 
layer straight-line data are collected by a laser line scanner, followed by 
geometry extraction and feature generation. Then, the initial layer 
height estimation model, i.e., an ANN model, is constructed and selected 
among multiple candidate models based on multi-layer straight-line 
deposition data. To make sufficient use of multi-layer straight-line data 
and save effort in training another model for layer height estimation at 
the corners, a DaNN model is established based on the selected ANN 
model for multi-layer corner deposition by considering both straight- 
line and corner features obtained from corner deposition. One of the 
corner features, the traverse speed, is revised using real-time measure
ment from a vision camera since the traverse speed deviates from as- 
designed traverse speed at the corners. Finally, the DaNN model is 
updated online and used to estimate the layer height in real time during 
multi-layer corner deposition. 

The selection of an initial layer height estimation model and estab
lishment of the DaNN model is conducted offline. Then, the trained 
DaNN model is continuously updated during printing and used for real- 
time layer height estimation. Further details are described in the 
following sections. 

2.2. Selection of initial layer height estimation model 

Since there are a lot of promising machine learning algorithms, a 
suitable algorithm should be selected by comparison to ensure the per
formance (Li et al., 2021; Wang et al., 2022). In this study, the perfor
mances of multiple machine learning algorithms are compared with 
different combinations of input features. Also, the hyperparameters for 
each model have been fine-tuned using Bayesian optimization method 
(Snoek et al., 2012). The best model, which is an ANN model, is selected 
as the initial layer height estimation model, as described in the following 
sections. 

2.2.1. Data collection and geometry extraction 
The layer height is collected using laser line scanner during multi- 

layer straight-line deposition and it represents the average deposition 
height differences between neighboring layers, noted also as inter-layer 
height in Fig. 2. The layer height variation during DED process can be 
categorized as inner-layer height variation and inter-layer height vari
ation as illustrated in Fig. 2. The inner-layer height variation is the 
height variation inside each layer, while the inter-layer height variation 
is the layer height variation among different layers. Since the inner- 
height variation using the state-of-art DED manufacturing technique 
will not cumulate and is much smaller than inter-layer height variation 
though preliminary experiments, the focus of this study lies on the inter- 
layer height variation during multi-layer straight-line deposition. 
Therefore, this step uses inter-layer height for the construction of initial 
layer height estimation model. 

To scan the cross-section profiles of the deposited layer during the 
DED process, a laser line scanner was attached to the DED printer nozzle 
and moved along with the nozzle during deposition (Binega et al., 2022). 
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The laser line scanner was positioned so that the projected line beam can 
scan the cross-sectional profiles of the deposited object. In each layer, 
several cross-sectional profiles are obtained and averaged to form an 
averaged cross-sectional profile. A spline curve is fitted for the averaged 
cross-sectional profile obtained from this layer, noted as a layer profile, 
as shown in Fig. 3. The maximum value of the fitted spline curve is 
defined as the deposition height at each layer. The layer height repre
sents the increment in the deposition height when a new layer is 
deposited on top of the previous layer. For multi-layer straight-line 
deposition, the difference of deposition height and previous deposition 
height is defined as the layer height. 

2.2.2. Feature generation 
The laser power, traverse speed, feed rate, layer number, NTSD, the 

deposition height and layer height in the previous layer are selected as 
the input features of the prediction model. The layer height in the cur
rent layer is defined as the output. The laser power and traverse speed 
control the energy density, while the feed rate and traverse speed 
determine how fast the powder is deposited on the layer surface. These 
three features are known to be the most critical parameters that control 
the track geometry (Pinkerton and Li, 2004; Lee and Farson, 2016). The 

NTSD also influences the energy density because the NTSD affects the 
focusing of the laser beam, thus it is calculated and selected as an input 
feature. It has been reported that the layer height varies during 
multi-layer deposition because of inevitable disturbances, such as heat 
accumulation, heat conduction, interlayer temperatures, and surface 
condition changes as more layers are deposited (Xiong and Zhang, 
2014). Therefore, the deposition height and the layer height of the 
previous layer and the layer number, are also added as input features 
since they may reflect these inevitable disturbances. 

The three principal printing parameters (laser power, traverse speed, 
powder feed rate) are used as the default input features together with up 
to four additional process parameters (layer number, previous layer 
height, previous deposition height and nozzle to top surface distance) to 
be determined; thus, there are a total of 15 feature combinations 
considering all possible cases, as shown in Table 1. A parametric study is 
performed in the next step to select the best input feature combination. 

2.2.3. Model selection 
Six prediction models were trained and compared, namely, (1) linear 

regression, (2) ANN, (3) random forest, (4) AdaBoost, (5) XGboost and 
(6) lightGBM. The following linear regression is the simplest and most 

Fig. 1. Overview of the proposed technique.  

Fig. 2. Explanation of layer height.  

Fig. 3. Geometry extraction of multi-layer straight-line deposition.  
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commonly used model (Bishop, 2006). 

y(x,w) = w0 +w1x1 +…+wDxD (1)  

where x = [x1, x2…xD] is the input feature vector, w = [w0,w1…wD] is 
the linear function parameter, and y is the output. An ANN model is a 
prediction model that can approximate linear and nonlinear relation
ships. A typical ANN consists of an input layer, an output layer, and one 
or more hidden layers, with each layer composed of multiple hidden 
neurons (Haykin, 2009). Random forest, AdaBoost, XGboost and 
lightGBM are tree algorithms that have been proven to perform well on 
regression problems based on decision trees (Mienye et al., 2019), and 
these four algorithms were chosen due to their popular adoption and 
excellent performance (Pathak et al., 2018). 

Fig. 4 shows the model selection process. The dataset from the multi- 
layer straight-line deposition was divided into training and test data. In 
the model training process, selection of the hyperparameters of each 
model is essential and has been reported to influence the model per
formance dramatically (Zhang et al., 2019). Therefore, validation data 
are often divided from the training data to perform hyperparameter 
optimization. Here, the hyperparameters are parameters that control the 
learning process, and they can be real-valued (e.g., learning rate), 
integer-valued (e.g., number of layers), binary (e.g., early stopping or 
not), or categorical (e.g., choice of optimizer) (Hutter et al., 2019). A 
Bayesian optimization algorithm with k-fold cross-validation was used 
to determine the best hyperparameters for each model. Once the 
training was complete, the test set was used to evaluate the performance 
of each prediction model. The layer height estimation model was 
selected as the one with the smallest root mean square error (RMSE) 
among the different algorithms and feature combinations. Next, a DaNN 
model was established based on the ANN model for layer height esti
mation of both straight-line and corners during multi-layer corner 
deposition. 

2.3. Development of DaNN model for multi-layer corner deposition 

Through straight-line deposition, an ANN model was successfully 
obtained for layer height estimation. However, the DED process involves 
both straight-line and corner depositions, and severe layer height 

deviation often occurs during corner deposition. In this study, the 
knowledge transfer concept was adopted for layer height estimation 
during corner deposition, which has been proven to be a more efficiently 
way for model establishment under such situation (Zhang et al., 2021; 
Fan et al., 2018). Rather than collecting large amounts of data during 
corner deposition, utilizing multi-layer straight-line data is preferred 
when estimating the layer height of corners to save time and effort. In 
this way, it is essential to consider differences in the formation of 
straight-line and corner layers, which include one easily observable 
difference (i.e., traverse speed) and other unobserved differences such as 
heat accumulation. Therefore, a DaNN model was developed based on 
previous ANN model using multi-layer straight-line data and corner 
features including speed revision. 

2.3.1. Speed revision 
Because the traverse speed often decreases at corners and differs 

from the as-designed value, the actual traverse speed is measured in real- 
time by a vision camera and used to replace the as-designed traverse 
speed in corner features. 

The real-time measurement of traverse speed is illustrated in Fig. 5. A 
vision camera was installed about 1 m away from an artificial marker 
and the marker was attached to the nozzle to trace the nozzle movement. 
A camera continuously captured the images, including the marker, 
during the deposition at a high sampling rate. A template matching al
gorithm based on normalized cross-correlation (Xu et al., 2018) was 
then adopted to detect the marker movement in the images. A conver
sion scale between the pixel unit and the physical length unit was 
determined using the physical size of the target and its corresponding 
size in pixel units (Lee and Shinozuka, 2006), so that the movement of 
marker can be converted from pixel units to physical length units. The 
actual traverse speed of the nozzle was approximated using the move
ment of the marker in physical length units. 

2.3.2. Model establishment 
To utilize multi-layer straight-line data for layer height estimation 

during multi-layer corner deposition, the domain adaption problem in 
knowledge transfer is a key issue in this study. The domain adaption is in 
giving a labeled source domain Ds =

{
xi, yi

}
, and an unlabeled target 

domain Dt =
{
xj
}
, where xi and xj are the feature vectors and yi is the 

label. The feature space and label space in the source and target domains 
are the same, but the data distributions are different, and the goal is to 
utilize the knowledge from Ds to obtain the label of Dt Ben-David et al. 
(2010). In this study, the source domain is multi-layer straight-line data, 
and the target domain refers to the features obtained during multi-layer 
corner deposition, including straight-line feature and corner feature. To 
solve the domain adaptation problem, Ghifary et al. (2014) proposed a 
DaNN model for object recognition which consists of only one hidden 
layer and one output layer. Through calculating the data distribution 
difference between the source and target domains by maximum mean 
discrepancy (MMD) and including the difference in loss function, the 

Table 1 
Feature combinations.  

Index Feature combination Index Feature combination 

1 P, V, Fr 9 P, V, Fr, preLH, N 
2 P, V, Fr, NTSD 10 P, V, Fr, preLH, preDH 
3 P, V, Fr, N 11 P, V, Fr, N, preDH 
4 P, V, Fr, preLH 12 P, V, Fr, NTSD, preLH, N 
5 P, V, Fr, preDH 13 P, V, Fr, NTSD, preLH, preDH 
6 P, V, Fr, NTSD, preLH 14 P, V, Fr, preLH, N, preDH 
7 P, V, Fr, NTSD, N 15 P, V, Fr, preLH, N, preDH, NTSD 
8 P, V, Fr, NTSD, preDH    

Fig. 4. Model selection process and the selected ANN model.  
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network becomes more invariant across different domains. 
After obtaining the actual traverse speed, the proposed DaNN model 

could be established, as shown in Fig. 6. The structure of DaNN model 
was then revised to include two hidden layers since the best ANN model 
from previous section was utilized, and the loss function of the neural 
network of DaNN model was revised to use the MSE loss rather than the 
empirical log-likelihood loss so that the model can be used for regression 
rather than classification. As shown in the upper part of Fig. 6, a feed 
forward neural network was constructed using the ANN model obtained 
in Section 2.2, described by Eqs. (2) and (3). 

A〈t〉 = W〈t〉X〈t− 1〉 +B〈t〉 (2)  

X〈t〉 = g〈t〉( A〈t〉 ) (3)  

where the superscript t represent the particular layer of the network, e. 
g., t = 0 represents the input layer and t = 1 represents the first hidden 
layer. The term g〈t〉( • ) represents nonlinear activation function. A〈t〉 is a 
matrix of the linear transformation of the input X〈t− 1〉, calculated using 

the weight matrix W〈t〉 and bias matrix B〈t〉. For example, in the first 
hidden layer, A〈1〉 consists of a〈1〉

j where j = 1,…,M and each component 

a〈1〉
j is a linear transformation of the input variables x〈0〉

1 ,…x〈0〉
D in the form 

shown in Eq. (4). The parameters w〈1〉
ji and b〈1〉

j are referred to as the 
weights and biases, respectively. 

a〈1〉
j =

∑D

i=1
w〈1〉

ji x〈0〉
i + b〈1〉

j (4) 

The neural network loss (JNN) was calculated using the Mean Squared 
Error (MSE) loss given source domain label. Then, the target domain 
input, which contains the features obtained during corner deposition, 
passed through the same feed forward neural network. An adaptation 
layer was then added and the MMD loss (JMMD) was calculated using Eq. 
(5), where γ is a regularization constant determining the importance of 
the MMD contribution to the loss function. The MMD was calculated by 
choosing the Gaussian kernel as it has been well studied and proven to 
be effective for MMD calculation in practice (Gretton et al., 2012). The 
MMD loss was treated as additional loss and added to the neural network 

Fig. 5. Traverse speed measurement using vision camera.  

Fig. 6. The established DaNN model.  
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loss, which forms the final loss function for model training as repre
sented in Eq. (6). 

JMMD = γMMD2( X〈2〉
s ,X〈2〉

t

)
(5)  

JDaNN = JNN + JMMD (6)  

2.4. Online DaNN model updating for accuracy improvement 

To further improve the layer height estimation performance, the in- 
situ data obtained during corner deposition was used as the target 
domain input for updating the proposed DaNN model, as illustrated in 
Fig. 1. With multi-layer straight-line data and data batch from corner 
deposition, speed revision was performed for the corner feature and the 
DaNN model was trained and used for layer height estimation. Then, this 
procedure was repeated when more and more data batches were ob
tained, so that the DaNN model was updated online and expected to 
remain adaptive for new data, thus achieving better estimation 
performance. 

The real-time layer height estimation can be achieved during depo
sition by acquiring required features in advance. The features except the 
traverse speed can be obtained before deposition of the current layer, 
and the traverse speed can be measured by vision camera with specific 
frame rate during deposition of current layer. Real-time can be achieved 
because the layer height can be estimated less than a second during 
deposition of the current layer. 

3. Experiment setup 

3.1. Description of directed energy deposition system 

A commercial metal DED printer (MX-400 DED from Insstek Inc.) 
was used in this study and was equipped with ytterbium fiber laser, 
metal powder carrier, shield gas and carrier gas (Argon gas), and me
chanical moving stage. As shown in Fig. 7, metal powders are delivered 
by carrier gas, melted by the laser beam, and deposited on top of a 
substrate or previously deposited layer. The mechanical stage with 5 
degrees-of-freedom moves the nozzle carrying the laser beam and 
powder delivery system so that layers can be deposited in different lo
cations and in various shapes. The specifications of DED machine and 
setup of the printing parameters used in the experiment based on rec
ommendations from the manufacturer of the printer and preliminary 
experiments are summarized in Table 2. A 1070 nm continuous wave 
ytterbium fiber laser was used in the Insstek MX-400 DED printer. The 
recommended optimal laser beam size, carrier gas flow rate, and shield 
gas flow rate were 800 µm, 2.5 L/min and 5.0 L/min, respectively. In 
order to ensure the quality of the printed components, the value of laser 
power, traverse speed and powder feed rate were limited to a range of 
300–900 W, 5–15 mm/s, and 3–4 g/min, respectively, based on 

preliminary experiments. Note that the NTSD should be maintained at 
9 mm to achieve the optimal laser beam diameter of 800 µm on the 
target surface. 

3.2. Design of experiments and description of test specimens 

To establish initial layer height estimation model and analyze effects 
of printing parameters on layer height, data samples from multi-layer 
straight-line deposition under varying printing parameter conditions 
were collected. For the design of experiments, a full factorial design 
(Fisher, 1949) is used in this study as shown in Table 3. The four variable 
factors were laser power, traverse speed, feed rate and layer number 
with varying conditions choosing from their recommended range. The 
recommended ranges for layer power, traverse speed and powder feed 
rate were listed in Table 2, and the range of layer number was deter
mined as 1–10 by referring to previous literature (Liu et al., 2020). Four 
conditions of laser power (300, 500, 700, and 900 W), three conditions 
of traverse speed (5, 10, and 15 mm/s), 3 conditions of feed rate (3.2, 
3.6, and 4 g/min), and ten conditions of layer number (1–10 layers) 
were selected by evenly taking values in each corresponding range. In 
such case, 360 (= 4 × 3 × 3 × 10) straight-line samples can be collected. 

To establish DaNN model for layer height estimation of corner 
deposition, a small amount of data from multi-layer corner deposition is 
needed. Therefore, an L-shape specimen was fabricated under a printing 
parameter condition shown in Table 4, the corner angle had a 90◦

corner, and the numbers of deposited layers were 1–18. Finally, to 
validate the proposed layer height estimation method by online 

Fig. 7. Description of powder DED system.  

Table 2 
Specifications of DED machine and printing parameter setup.  

DED machine Insstek MX-400 DED 

Laser type 1070 nm Ytterbium fiber laser 
Laser beam size 800 µm 
Carrier gas flow rate 2.5 L/min 
Shield gas flow rate 5.0 L/min 
Laser power 300–900 W 
Traverse speed 5–15 mm/s 
Powder feed rate 3.2–4 g/min  

Table 3 
Fabrication of multi-layer straight-line under varying printing parameter 
conditions.  

P (W) V (mm/s) Fr (g/min) N 

300 
500 
700 
900 

5 
10 
15 

3.2 
3.6 
4 

1–10 

4 conditions 3 conditions 3 conditions 10 conditions  
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updating DaNN model, multi-layer corner depositions were conducted. 
The trapezoid-shape specimens were manufactured under five printing 
parameter conditions as listed in Table 4, with varying corner angles 
(45◦, 90◦, and 135◦) and layer numbers (1–18 layers). 

Test specimens were printed using 316 L stainless steel powder (TLS 
Technik GmbH & Co. Spezialpul-ver KG). The powder is spherical, with 
98% of the powder size between 45 and 150 µm and an average powder 
size of 100 µm. Powder sizes smaller than 45 µm and larger than 150 µm 
both account for 1%. Substrates for the deposition of test specimens used 
316 L stainless steel with dimensions of 100 mm × 50 mm × 10 mm. As 
shown in Fig. 8, three types of multi-layer specimens were fabricated 
under varying printing parameter conditions: (1) straight-line, (2) L- 
shape, and (3) trapezoid-shape specimens. 

4. Experiment results and discussion 

4.1. Preliminary data analysis 

The layer height was obtained from multi-layer straight-line depo
sition using laser line scanner as illustrated in Fig. 3. The layer height of 
the first three layers, referred as LH1, LH2 and LH3, under different 
deposition conditions were presented in Fig. 9. In general, the layer 
height increased when the laser power increased, the traverse speed 
decreased and the feed rate increased, which conformed with existing 
studies. This was mainly attributed to the change of deposition mass 
with varying values of the laser power, the traverse speed, and the feed 
rate. With larger laser power, more energy was provided into the melt 

pool and more powder was melted, resulting in an increase of deposition 
mass thus the layer height increased. When the traverse speed 
decreased, the amount of powder deposited per unit time increased, 
leading to the increase of layer height. With a larger feed rate, more 
powder was melted, and the deposition mass increased which led to the 
layer height increase (Wirth and Wegener, 2018; Liu et al., 2020; Criales 
et al., 2017). 

In addition, there were some noteworthy observations. First, for the 
first layer, the layer height decreased once the laser power exceeded 
700 W. The decrease of the layer height might be due to the fact that 
excessive laser power could drive the liquid metal in the melt pool to 
flow around under various forces such as gravity and Marangoni con
vection (Lee and Farson, 2016), causing the melt pool to be more flatten, 
and resulting in the decrease of the layer height (Liu et al., 2018). Sec
ond, at high traverse speeds (15 mm/s), the same change in feed rate 
had a less significant effect on layer height. Comparison of the second 
and third columns revealed that the layer heights at the feed rates of 
3.6 g/min and 4.0 g/min were almost same and the higher feed rates 
occasionally resulted in the smaller layer heights. It can be inferred that 
this is because although the amount of powder increased, only part of 

Table 4 
Fabrication of multi-layer corner deposition under varying printing parameter 
conditions.   

P (W) V (mm/s) Fr (g/min) N 

L-shape 700 10 3.6 1–18 
Trapezoid-shape 700 10 3.6 1–18 

600 15 4 1–18 
700 10 3.6 1–18 
500 10 3.2 1–18 
700 15 3.6 1–18  

Fig. 8. Test specimens: (a) multi-layer straight-line deposition, (b) multi-layer L-shape deposition and (c) multi-layer trapezoid-shape deposition.  

Fig. 9. Layer heights of first three layers under different deposition conditions.  
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the powder could be melted due to the limited energy provided (Liu and 
Li, 2007). Overall, it can be observed that the traverse speed had the 
most significant effect on the layer height. 

Fig. 10 shows the comparison of the relationship between the 
deposition height and the layer number obtained from different corner 
deposition angles. The deposition height was always the smallest for the 
straight-line deposition, and the sharper the corner angle, the larger the 
deposition height. This is most likely due to a more traverse speed 
reduction occurs at sharp angles (Comminal et al., 2019) and it can be 
inferred that the slower the traverse speed, the higher the corner height. 
However, quantitative relationships between traverse speed and depo
sition height at corners have not been explicitly explained. Besides, the 
deposition height difference between the corner and straight-line parts 
increased as more layers were deposited at the corners (45◦, 90 ◦, 135 ◦) 
due to cumulative errors, which indicates the necessity of geometry 
control during corner deposition. 

4.2. Results of selection of layer height estimation model 

The dataset obtained from the multi-layer straight line deposition 
was divided into training and test data in a ratio of 0.8 and 0.2, 
respectively. The training data was used to train each candidate model 
and the test data was used to evaluate the performance of the candidate 
models. For each model and each feature combination, a Bayesian 
optimization algorithm with 5-fold cross validation was used to find the 
best hyperparameters during the training process. After that, the test 
data was used to evaluate the performance of each prediction model. 
Among the candidate prediction models and different feature combi
nations, the one with the smallest RMSE is selected as the initial model.  
Fig. 11 shows the RMSEs of the six prediction models with different 
feature combinations. Among all prediction models, the linear regres
sion model resulted in the worst prediction performance and the ANN 
model almost always performed the best under different feature com
binations. As for feature selection, each prediction model had its own 
best feature combinations and there was no unique best feature com
bination across all the prediction models. It was clear that the estimation 
with only three principal printing parameters (Index 1) was always 
worse than those considering additional process parameters. 

The ANN model with all features (feature combination index 15) 
achieved the smallest RMSE of 9.8 µm on the test data, and this model 
consists of two hidden layers with 9 and 7 neurons, respectively, as 
shown in Fig. 4. Fig. 12 shows the layer estimation performance of the 
ANN model on the test data. 

4.3. Results of development of DaNN model 

A SONY α6400 vision camera was used in the experiment with a 
34 mm telephoto lens. The camera captured the target images at 60 Hz 
with a pixel resolution of 1920× 1080. The conversion scale between 
the pixel units and the physical length units was calculated to be 

1.166 mm/pixel. The movements of the attached marker in the X and Y 
axes were tracked and used to calculate the speed along the X and Y axes. 
The traverse speed was obtained by summing the speed vectors in the X 
and Y axes. Fig. 13 shows a traverse speed time series recorded during 
trapezoid-shape specimen deposition. The profile number of each corner 
can be determined when the speed in X and Y axes change, and the 
corresponding traverse speed of each corner was obtained, as shown in 
Fig. 13. The recorded time series reveals that the traverse speed 
decreased at the corner parts and smaller angles led to larger decreases 
in the traverse speed at the corners. 

After obtaining the traverse speed at the corners, the corner feature 
was revised accordingly and the DaNN model could be trained based on 
the multi-layer straight-line data (source domain) and features from the 
L-shape deposition (target domain). The training process was conducted 
on GPU (NVIDIA GeForce RTX 2060 SUPER) using Python 3.6, Pytorch 
1.10.2 and CUDA 11.3, and the training time took 16 s for 3500 epochs. 
The constructed ANN model was also applied on the L-shape deposition 
data for comparison with the DaNN model. 

Fig. 14 compares the layer and deposition heights estimated using 
the DaNN model (orange line) and the ANN model (green line), 
respectively. The reference layer heights (blue line) were measured by 
the laser line scanner (Micro-Epsilon scanControl 3000–25/BL). In 
Fig. 14 (a), the layer height estimation at the 90◦ corner using the DaNN 
model provided a much better result (RMSE=14.6 µm) than using the 
ANN model (RMSE =37.2 µm), validating the effectiveness of the pro
posed DaNN model. The layer height estimation of the straight-line part 
using the proposed DaNN model, and the ANN model did not have any 
significant difference, as the RMSE obtained from DaNN (9.2 µm) and 

Fig. 10. Comparison of the relationship between the deposition height and 
layer number at different corner deposition angles. 

Fig. 11. RMSE of layer height estimation for multi-layer straight-track depo
sition with different algorithms and feature combinations. 

Fig. 12. Layer height estimation for test data using ANN model.  

Fig. 13. Example of traverse speed measured during trapezoid- 
shape deposition. 
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ANN (10.6 µm) are quite similar (Fig. 14 (b)). This result revealed that 
the proposed DaNN trained after considering corner features could still 
perform well for straight-line deposition. The DH at each layer was 
calculated by the accumulation of the layer height of all previous layers, 
and the result shown in Fig. 14, to gaining a more obvious comparison of 
the estimation performance. The deposition height in Fig. 14 shows that 
(1) The deposition height estimated using the DaNN model was close to 
the reference deposition height; and (2) the error of each layer height 
estimation did not accumulate as more layers were deposited. 

4.4. Results of real-time layer height estimation during multi-layer corner 
deposition 

Once the DaNN model was obtained, real-time layer height estima
tion was performed during the fabrication of the five specimens shown 
in Table 3. To further improve the estimation performance during corner 
deposition, the DaNN model was updated using in-situ data obtained 
from the trapezoid-shape deposition. Data from each specimen was 
treated as a data batch to continuously update the DaNN model and the 
updated DaNN model was used for real-time layer height estimation of 
the next data batch. The time for updating the DaNN model was about 
20 s when new data batches were added, which was considered 
acceptable since it is common to have several seconds or minutes of 
preparation time between the deposition of specimens. The layer height 
estimation using the proposed DaNN model took less than 1 ms for each 
data sample. The traverse speed is measured at a 60 Hz frame rate, and 
this is equivalent to a 0.017 s measuring time for each data sample. 
Therefore, the layer height for the current layer can be estimated within 
0.018 s Fig. 15 shows the RMSE of the layer height of each data batch, 
and a slight improvement can be seen when more data batches were 
deposited (Table 5). 

Fig. 16 shows the real-time layer height estimation results of data 
batch 5, including 90◦, 135◦, 45◦ corner parts and the straight-line part 
during trapezoid-shape deposition. Similarly, the reference layer height 

(blue line) was measured by the laser line scanner. The orange and green 
lines denote the estimation using the updated DaNN model and the ANN 
model, respectively. The updated DaNN model achieved better layer 
height estimation performance than the ANN model for all corners, 
especially for sharp corner (45◦), where the estimated deposition height 
using the updated DaNN model was much closer to the reference 
deposition height compared with that using the ANN model. 

The improvement achieved by the online updated DaNN model 
compared with ANN model was calculated using the following equation. 

Improvement =
RMSE(DaNN) − RMSE(ANN)

Average layer height
(7) 

where RMSE(DaNN) and RMSE(ANN) are the RMSE value of the layer 
height estimation obtained using the updated DaNN model and ANN 
model, respectively. Table 4 and Fig. 17 show the layer height estima
tion results using the ANN model and the improvement achieved by 
updated DaNN model. The updated DaNN substantially improved the 
layer height estimation during corner deposition, and the improvement 
was more significant particularly for smaller corner angles because the 
traverse speed decrease more significantly at corners with smaller 

Fig. 14. Comparison of the estimated layer height of (a) 90◦ corner part and (b) straight-line part, and deposition height of (c) 90◦ corner part and (d) straight-line 
part using DaNN model and ANN model during L-shape deposition. 

Fig. 15. RMSE of real-time layer height estimation of data batch 1–5.  
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angles. The overall RMSE of real-time layer height estimation during 
corner deposition with different angles was calculated as 25.7 µm when 
the typical layer height was about 250 µm. 

5. Conclusions 

In this study, a real-time layer height estimation technique is 
developed for DED based multi-layer corner deposition. Layer height 
estimation model is constructed by considering not only three principal 
printing parameters (P, V, Fr) but also additional process parameters (N, 

preLH, preDH, NTSD), and it could achieve better performance than 
considering only the three principal process parameters. Layer height 
estimation of the corner part and straight-line part during corner 
deposition is achieved by utilizing straight-line data and a DaNN model, 
which saves the time and effort in collecting a large amount of data 
during corner deposition for training. Finally, real-time layer height 
estimation was achieved during corner deposition with the online 
updated DaNN model, with the best estimation performance and layer 
height estimation for corners with different angles validated. 

Although the proposed method has been validated at three different 
angles (45◦, 90◦ and 135◦), a more comprehensive analysis for addi
tional angles should be achieved in future study. Also, the layer width of 
the corner part is not investigated here, because the layer width did not 
change much at the corner points based on our preliminary experiments. 
If necessary, a similar framework can be used for layer width estimation. 
The experimental results in this study reveal that traverse speed, powder 
feed rate and laser power can be used to achieve geometry control, and 
additional process parameters also influence layer height. Therefore, a 
follow-up study is warranted for layer height control by changing the 
toolpath, powder feed rate and laser power with consideration of 

Table 5 
layer height estimation using the updated DaNN model and the ANN model.  

Trapezoid-shape RMSE (μm) Improvement   

Corner Batch # Updated DaNN ANN  

Corner 135◦ 1 33.6 43.6 5.3%  
2 19.7 37.1 8.9%  
3 20.9 34.0 6.1%  
4 22.7 36.8 7.4%  
5 27.6 39.7 6.1% 

Corner 90◦ 1 30.3 47.4 9.0%  
2 18.6 42.0 12.0%  
3 25.0 42.6 8.2%  
4 17.6 38.9 11.2%  
5 17.2 49.1 16.0% 

Corner 45◦ 1 54.1 128.3 39.1%  
2 37.1 124.2 44.7%  
3 39.7 115.9 35.4%  
4 28.4 103.8 39.5%  
5 30.2 130.8 50.3% 

Straight 1 14.5 16.7 1.2%  
2 16.7 19.6 1.5%  
3 19.6 22.6 1.4%  
4 21.6 25.9 2.3%  
5 19.6 23.9 2.2% 

Average RMSE 25.7     

Fig. 16. Real-time layer height estimation during corner deposition, data batch 5.  

Fig. 17. Improvement of layer height estimation achieved by pro
posed method. 
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additional process parameters during corner deposition, especially for 
sharp corners. 
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