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A B S T R A C T   

Structural displacement monitoring is essential because displacement can provide critical information regarding 
the health condition of civil structures. However, the precise estimation of structural displacement remains a 
challenge. This paper describes a displacement estimation technique that fuses asynchronous acceleration and 
vision measurements at different sampling rates. A hybrid computer vision (CV) algorithm and an adaptive multi- 
rate Kalman filter are integrated to efficiently estimate high-sampling displacement from low-sampling vision 
measurement and high-sampling acceleration measurement. An initial calibration algorithm is proposed to 
automatically determine active pixels and two scale factors required in the hybrid CV algorithm without any 
prior knowledge or ad-hoc thresholding. The proposed technique was experimentally validated and high- 
sampling displacements were accurately estimated in real-time with less than 1.5 mm error, indicating the po
tential of the proposed technique for practical applications in long-term continuous structural displacement 
monitoring.   

1. Introduction 

Structural displacement sensing is vital for civil structures because 
displacement helps understand the structure’s global behavior and 
evaluate its safety [1]. Displacement is adopted as a safety indicator in 
structural design codes of several countries [2–4]. For example, the USA 
design code requires the displacement of a bridge to be less than 1/1000 
of its length under normal vehicle and pedestrian loads [2]. In addition, 
displacement is useful in evaluating the bridge load-carrying capacity 
[5,6], identifying modal parameters of structures [7,8], and updating 
the finite element model of structures [9]. 

Several techniques have been developed to directly measure or 
indirectly estimate structural displacement, and they can be categorized 
into (1) contact and (2) non-contact techniques. Linear variable differ
ential transformers (LVDT) [10] and accelerometers [6] are typical 
contact-type sensors. However, installing an LVDT on the field is not 
convenient, and low-frequency displacement cannot be accurately esti
mated using an accelerometer. The real-time kinematic global naviga
tion satellite system (RTK-GNSS) [11], laser Doppler vibrometer (LDV) 
[12], and radar systems [13,14] are typical non-contact sensors. 

However, RTK-GNSS has a low sampling rate of 20 Hz and limited ac
curacy of approximately 7–10 mm. Although LDV and radar systems can 
measure high-accuracy and high-sampling displacement, these devices 
are expensive and require a rigid ground for installation, making them 
impractical in civil infrastructure applications. A vision camera is 
another option for non-contact structural displacement monitoring. The 
movement of a target structure is tracked by a vision camera installed on 
rigid ground using various computer vision (CV) algorithms [15–21], 
such as template matching [15,16], feature-matching (FM) [17,18], and 
optical flow algorithms [19,20]. However, the target movement initially 
estimated from vision measurements is in a pixel unit, and a scale factor 
is required to obtain the target displacement in physical length units. 
The scale factor is commonly estimated from the target physical size, but 
it is cumbersome to measure the target physical size on the field. 
Moreover, these CV algorithms fail to estimate the displacement in real 
time at a high sampling rate, owing to the high computational cost. 

To address the aforementioned limitations, researchers have 
attempted to fuse vision cameras and accelerometers for structural 
displacement estimation. Vision-based displacement estimated at a low 
sampling rate and acceleration measured at a high sampling rate were 
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combined to estimate the displacement with a high sampling rate. 
However, this process still requires a target physical size for scale factor 
estimation [22,23]. The authors previously proposed a real-time struc
tural displacement estimation technique by fusing asynchronous vision 
and acceleration measurements [24]. The scale factor was first esti
mated automatically using acceleration measurements. Next, the low- 
sampling vision-based displacement estimated using an improved FM 
(IFM) algorithm was fused with the acceleration measurement by an 
adaptive multi-rate Kalman filter (AMKF) developed for real-time high- 
sampling displacement estimation. However, the low-sampling 
displacement estimated with the IFM algorithm suffers from low- 
accuracy issues, particularly for subtle pixel translation, thereby dete
riorating the estimation accuracy of the final high-sampling 
displacement. 

Recently, a phase-based optical flow (POF) algorithm was developed 
to estimate displacement from vision measurements [25], and several 
studies have demonstrated that the algorithm is highly sensitive to the 
subtle movement of a target [26–30]. In brief, this algorithm extracts the 
local phase from vision measurements and estimates the target 
displacement using the phase variation. However, the conversion of the 
phase variation to displacement requires spatial differential and matrix 
inverse operations [26], which may not guarantee a stable displacement 
estimation when vision measurement has a high noise level and poor 
resolution. Furthermore, although the POF algorithm has been widely 
adopted, most studies have focused on the frequency components of the 
estimated displacement for damage detection [27,28] and modal iden
tification [29,30]; therefore, less attention has been paid to the ampli
tude accuracy of the estimated displacement. In addition, the selection 
of active pixels within a region of interest (ROI), that is, the pixels whose 
phases are related to the target movement, requires an ad-hoc threshold 
[30]. Moreover, phase-wrapping may occur with a large target move
ment [31], resulting in inaccurate displacement estimation. 

Motivated by the aforementioned (1) low-accuracy issue of our 
previous technique using vision camera and accelerometer [24] and (2) 
potential of the existing POF algorithm in improving displacement 
estimation accuracy and its drawbacks, this study proposes a high- 
accuracy displacement estimation technique by integrating the exist
ing POF algorithm to our previous technique and addressing the draw
backs of the existing POF algorithm. A hybrid CV algorithm, that is, the 
combined POF and FM algorithm, was first proposed to accurately es
timate displacement from low-sampling vision measurements. This al
gorithm requires active pixels and two scale factors (converting phase 
and translation to displacements, respectively), which are automatically 
determined by the proposed initial calibration algorithm. Thereafter, an 
AMKF is adopted to fuse the vision-based displacement estimated at a 
low sampling rate with the acceleration measured at a high sampling 
rate, and the final displacement is estimated in real time with a high 
sampling rate and improved accuracy. The main contributions of this 
study are as follows: (1) a hybrid CV algorithm is proposed by combining 
the FM and POF algorithms to estimate a high-accuracy displacement 
from vision measurement even in the presence of large structural 
displacement; (2) two scale factors for converting phase and translation 
to displacement, respectively, are automatically estimated without any 
prior knowledge; (3) active pixels within an ROI are automatically 
selected without any ad-hoc threshold; and (4) the displacement esti
mation accuracy is significantly improved compared to previous tech
niques in both laboratory and field tests. 

The remainder of this paper is organized as follows. The POF algo
rithm for displacement estimation is briefly reviewed in Section 2, fol
lowed by an explanation of the proposed technique in Section 3. The 
performance of the proposed technique is first validated by indoor 
single-story building test and outdoor shaking-table test in Section 4. In 
Section 5, a field test is conducted on a steel box-girder pedestrian bridge 
to further validate the proposed technique. The concluding remarks are 
presented in Section 6. 

2. Review of the POF algorithm for vision-based displacement 
estimation 

To obtain a vision-based displacement estimation, a vision camera 
placed on rigid ground is aimed at a natural or artificial target on a 
structure. The displacement is then estimated by tracking the target 
movement within the vision measurements, that is, a series of vision 
images. It has been demonstrated that a local phase extracted from 
vision images is highly sensitive to subtle target movement [25] and is 
adopted for structural displacement estimation, that is, the POF algo
rithm [26]. The procedure for estimating the target vertical displace
ment at the ith time step using the POF algorithm is briefly illustrated 
below (Fig. 1). Note that the field of view (FOV) of the camera is usually 
rather large, and only a portion of an image, including the target (i.e., 
ROI), is cropped and processed for structural displacement estimation. 

Assuming that the ith ROI with a size of M × N and an intensity of Ii(x, 
y) at a spatial location (x,y) is obtained, its local phase φi(x,y) and 
amplitude Ai(x,y) are extracted in the vertical direction by calculating 
the spatial convolution between the ROI and a complex Gabor filter (G2

v 

+ jH2
v), 

Ai(x, y)ejφi(x,y) =
(
Gv

2 + jHv
2

)
⨂Ii(x, y) (1) 

Next, the full-field vertical displacement at the ith time step is esti
mated from the phase variation compared with the initial phase 
extracted from the 1st ROI (φ1(x,y)): 

ui(x, y) = − α
[

∂φi(x, y)
∂x

]− 1

[φi(x, y) − φ1(x, y) ] = − α
[

∂φi(x, y)
∂x

]− 1

φ1,i(x, y)

(2)  

where α denotes a scale factor for converting a pixel unit to a length unit, 
and φ1, i(x,y) is the phase variation between the 1st and ith ROIs. Finally, 
the target displacement is estimated as the spatial average of ui(x,y), 

ui =
1

M × N
∑

(x,y)∈ROI

ui(x, y) =
α

M × N
∑

(x,y)∈ROI

{

−

[
∂φi(x, y)

∂x

]− 1

φ1,i(x, y)

}

(3) 

More details regarding the POF algorithm can be found in the study 
by Chen et al. [26]. 

However, this study has several limitations. First, −
[

∂φi(x,y)
∂x

]− 1 
in Eq. 

(3) acts as a scale factor for converting phase variation into translation in 
a pixel unit, but the spatial differential and matrix inverse operation may 
not guarantee a stable scale factor, thereby leading to an inaccurate 
displacement estimation. Note that, several studies have simplified Eq. 
(3) to: 

ui =
β

M × N
∑

(x,y)∈ROI

φ1,i(x, y) = βφ1,i (4)  

and directly adopted the spatial average of the phase variation (φ1,i) for 
model identification or damage detection without calculating β [28]. 
Here, β denotes a scale factor for converting phase to displacement. 
Second, not all pixels within the ROI are active, and it is highly probable 
that incorrect pixels are selected as active pixels with an improper 
threshold [32]. Third, the application of the algorithm is limited to small 
target movements to avoid the phase-wrapping issue [31,33]. 

3. Development of the proposed structural displacement 
estimation technique 

This study proposes a displacement estimation technique that uses a 
collocated vision camera and accelerometer measurements. A vision 
camera and accelerometer were placed at the same location on a 
structure where the displacement was to be estimated (Fig. 2(a)). 
Assuming that the structure vibrates in a horizontal direction (X 
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direction), the accelerometer measured the acceleration of the structure 
with a high sampling rate in the same direction and the vision camera 
tracked a fixed target from the surroundings of the structure with a low 
sampling rate. Note that, it is assumed that the structure has only in- 
plane vibration, and the axes of the image plane and real-world plane 
are aligned. An AMKF and a hybrid CV algorithm were used to fuse 
vision and acceleration measurements for estimating displacement in 
real time with high accuracy and a high sampling rate. Considering that 
the hybrid CV algorithm requires active pixels and two scale factors, 
short-period vision and acceleration measurements were used for active 
pixel selection and scale factor estimation. Therefore, as shown in Fig. 2 
(b), the proposed technique was divided into two parts: (1) automatic 
initial calibration for active pixel selection and scale factor estimation 
(Section 3.1) and (2) real-time displacement estimation using an AMKF 
and a hybrid CV algorithm (Section 3.2). 

3.1. Automatic initial calibration for active pixel selection and scale 
factor estimation 

To estimate a high-accuracy displacement from vision measurement, 
even in the presence of a large structural displacement, this study pro
poses a hybrid CV algorithm by combining FM and POF algorithms. Note 
that Eq. (4) was adopted in this study instead of Eq. (3). Therefore, the 
proposed hybrid CV algorithm requires scale factors (α and β) to be 

estimated and active pixels to be selected. In this section, we propose an 
automatic initial calibration algorithm to estimate the scale factors (α 
and β) and select the active pixels. Assuming that vision and acceleration 
measurements are recorded for a short period (e.g., 50 s in this study), 
the initial calibration algorithm is explained step-by-step as follows: 

Step 1: Large motion removal by updating ROI location 
First, ROIs were cropped from the recorded short-period vision 

measurement with a fixed ROI location (denoted as the original ROIs), 
and a translation (d) was estimated from the original ROIs using an FM 
algorithm [34]. Then, the updated ROIs were obtained by updating the 
ROI location at each time step using d (Fig. 3). Considering that the ROI 
location is discrete at pixel resolution, the shift in the ROI location (dROI) 
can be expressed as follows: 

dROI = round(d) (5) 

The primary purpose of this step is to remove large motions in the 
original ROIs to ensure that the residual motion in the updated ROIs is 
sufficiently small to avoid the phase-wrapping issue in the POF 
algorithm. 

Step 2: Estimation of scale factor (α) 
First, the displacement (ua) was estimated from the recorded short- 

period acceleration measurements using double integration. Then, a 
band-pass filter was applied to ua and d to obtain the filtered displace
ment (ua

f ) and filtered translation (df), respectively. The lower cut-off 

Fig. 1. Overview of the conventional POF algorithm for displacement estimation.  

Fig. 2. Overview of the proposed displacement estimation technique: (a) sensor setup and (b) overall flowchart.  

Fig. 3. ROI location updating using the translation estimated by a FM algorithm to remove large motion.  
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frequency of the filter was set to be sufficiently high to remove the low- 
frequency drift in ua, and the upper cut-off frequency was set to 1/10 of 
the vision camera’s sampling rate [24]. Finally, the scale factor (α) for 
converting translation to displacement was estimated as the ratio be
tween ua

f and df using the least squares estimation (LSE) algorithm 
(Fig. 4). Here, ua

f was downsampled to match the sampling rate of df 

before applying the LSE algorithm [24]. 
Step 3: Selection of active pixels and estimation of scale factor (β)  

(a) The residual displacement (ur) in the updated ROIs was estimated 
as follows: 

ur = ua − αdROI = ua − α round(d) (6)  

and a filtered residual displacement (ur
f) was estimated by band-pass 

filtering ur with the same cutoff frequencies as in Step 2 (Fig. 5(a)).  

(b) The full-field phase (φ(x,y)) was first extracted from the updated 
ROIs using the POF algorithm and then band-pass filtered to 
obtain a filtered phase (φf(x,y)). Subsequently, a correlation co
efficient (ρ(x,y)) was calculated between ur

f and φf(x,y) for each 
pixel. Here, ur

f was downsampled to match the sampling rate of 
φf(x,y) before calculating the correlation coefficient (Fig. 5(b)).  

(c) A threshold (ρt) was initially set to min{|ρ(x,y)|}, and pixels with 
an absolute value of the correlation coefficient above the 
threshold were initially selected as active pixels. An averaged 
phase (φf ) was obtained as the spatial average of the filtered 
phases of all the active pixels. Next, the scale factor (β) for the 
converting phase to displacement was estimated as the ratio be
tween ur

f and φf using the LSE algorithm. The determination co
efficient (R2) was calculated to evaluate the accuracy of the 
estimation (Fig. 5(c)).  

(d) As ρt value changed from min{|ρ(x,y)|} to max{|ρ(x,y)|}, the 
corresponding β and R2 values were obtained. The optimized 
threshold (ρ̂t) was determined with the maximum value of R2, 
and was used to finalize the active pixels and estimate the final 
scale factor (β) (Fig. 5(d)). 

3.2. Real-time displacement estimation using an AMKF and a hybrid CV 
algorithm 

After selecting active pixels and estimating scale factors (α and β), 
the displacement is estimated in real time from asynchronous vision and 
acceleration measurements using an AMKF and the proposed hybrid CV 
algorithm. Note that, although other multi-rate Kalman filters are 
available for fusing measurements from different sensors, they all 
require synchronous measurements of the sensors [35–38]. Therefore, 
the AMKF previously developed by the authors for asynchronous vision 
and acceleration measurements [24] was used in this study for 
displacement estimation. 

3.2.1. AMKF-based fusion of asynchronous vision and acceleration 
measurement 

Based on the availability of acceleration and vision measurements, 

three different types of time steps were defined, and the AMKF was 
formulated accordingly, as shown in Fig. 6. In a Type-I time step, the 
vision measurement was not available, and a state (x̂k) was estimated 
using the state and acceleration at the previous time step (x̂k− 1 and ak− 1, 
respectively): 

x̂k = A(Δta) x̂k− 1 +B(Δta)ak− 1;A(Δta) =

[
1 Δta
0 1

]

;B(Δta) =

[
Δt2

a

/
2

Δt

]

(7)  

and its covariance (P̂k) was obtained as follows: 

P̂k = A(Δta)P̂k− 1AT(Δta)+ qB(Δta)BT(Δta) (8) 

Here, x̂k includes two entities, corresponding to the displacement 
and velocity estimated at t= kΔta, respectively. Δta and q denote the time 
interval and noise variance, respectively, of the acceleration measure
ments. The q value can be easily estimated using laboratory testing. 

In a Type-II time step, a prior state and its covariance (ŷ −i and Ĝ
−

i , 
respectively) were first estimated as: 

ŷ −

i = A(Δt1) x̂k +B(Δt1)ak (9) 

Ĝ
−

i = A
(
Δti,k

)
P̂kAT ( Δti,k

)
+ qB

(
Δti,k

)
BT ( Δti,k

)
; Δti, k = iΔtd −

kΔta.where i denotes the ith time step of the vision measurements andΔtd 

denotes the time interval of the vision measurements. Using ŷ −

i and Ĝ
−

i , 
a hybrid CV algorithm was proposed and applied to estimate displace
ment ui from vision measurements. Details are provided in Section 3.2.2. 
Thereafter, the noise variance of ui (Ri) was estimated adaptively as [39] 

Ri = γRi− 1 +(1 − γ)
(
η2

i − HĜ
−

i HT), 0 < γ < 1 (10) 

ηi = ui − Hŷ−

i , H = [1 0]Twhere γ denotes the forgetting factor. 
Subsequently, the filter gain (K) was calculated as follows: 

K = P̂iHT ( HP̂iHT + Ri
)− 1 (11) 

The final state and its covariance (ŷ+

i and Ĝ
+

i , respectively) were 
updated as follows: 

ŷ+

i = (I − KH) ŷ−

i +Kui (12)  

Ĝ
+

i = (I − KH)Ĝ
−

i 

In Type-III time step, a state was estimated as follows, and state 
covariance was estimated accordingly. Details of the AMKF can be found 
in the study by Ma et al. [24]. 

x̂k+1 = A
(
Δtk+1,i

)
ŷ+

i +B
(
Δtk+1,i

)
ak (13)  

Δtk+1,i = (k+ 1)Δta − iΔtd  

3.2.2. Hybrid CV algorithm for high-accuracy displacement estimation 
A hybrid CV algorithm was proposed in this study to estimate the 

displacement from vision measurements for both subtle and large 
structural displacements, as shown in Fig. 7. First, the movement of the 

Fig. 4. Flowchart of estimating scale factor (α) for converting translation to displacement.  
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ROI location (di
ROI) was predicted, and the ROI at the ith frame was 

updated accordingly. 

dROI
i = round

(
ŷ −

i (1)
α

)

(14)  

where ŷ −i (1), that is, the first entity of ŷ−i , denotes the predicted 
displacement. Then, the residual displacement between the 1st and ith 

ROIs is given as follows: 

ur
i = ŷ −

i (1) − wi − αdROI
i (15)  

where wi denotes the estimation error in ŷ −i (1) and its variance is 
Ĝ

−

i (1, 1), that is, the first entity of Ĝ
−

i . Assuming that wi follows a normal 
distribution, a 99.7% confidence interval of ui

r can be estimated as 

⃒
⃒ur

i

⃒
⃒ ≤ ur

i,max = 3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ĝ
−

i (1, 1)
√

+ 0.5α (16) 

If ui, max
r < βπ, the phase variation between the 1st and ith ROIs is 

smaller than π, and the POF algorithm can be directly applied to extract 
the averaged phase variation (φ1,i) from the active pixels. Finally, the 
vision-based displacement (ui) can be estimated as: 

ui = α dROI
i + βφ1,i = α round

(
ŷ −

i (1)
α

)

+ βφ1,i (17) 

If ui, max
r ≥ βπ, the phase variation of the 1st and ith ROIs is equal to or 

larger than π, and the POF algorithm cannot be directly applied because 
of the phase-wrapping issue. Thus, a translation (di) between the 1st and 
ith ROIs was first estimated using an FM algorithm with automatic 
mismatch rejections [24]. Subsequently, di was used to update the ith 

ROI again, and the POF algorithm was applied to the 2nd updated ith ROI 
to extract the phase variation (φ1,i). Considering that the total movement 
of the ROI location in this case becomes, 

dROI
i = round

(
ŷ−

i (1)
α + di

)

(18)  

vision-based displacement (ui) can be finally estimated as follows: 

ui = α dROI
i + βφ1,i = αround

(
ŷ −

i (1)
α + di

)

+ βφ1,i (19)  

4. Laboratory validation 

4.1. Indoor single-story building model test 

The proposed technique was first validated using a single-story 
building model, as shown in Fig. 8. The building model was rigidly 
connected to an ELECTRO-SEIS APS-400 shaking table, which provided 
horizontal movement for the model (Fig. 8(a)). A force-balance-type 
uniaxial accelerometer and a vision camera were installed on top of 
the building model (Fig. 8(b)). The ground-truth displacement of the 
model was measured using a Polytec PSV-400-M4 LDV [40] (Fig. 8(c)). 
The vision measurement originally recorded at 29.97 Hz was down
sampled to 10 (≈29.97/3) Hz, while analog measurements from the 
accelerometer and LDV were discrete at a sampling rate of 100 Hz using 
a National Instruments USB-6343 data acquisition device. Furthermore, 
the vision and acceleration measurements were aligned on the same 
time axis using a correlation-based algorithm [22]. Fig. 8(e) shows the 
camera FOV and initial ROI. The distance between the target included in 

Fig. 5. Flowchart of selecting active pixels and estimating scale factor (β) for converting phase to displacement: (a) estimation of the filtered residual displacement, 
(b) calculation of the correlation efficient for all pixels, (c) selection of active pixels with an initial threshold (ρt = min {|ρ(x,y)|}), and estimation of β and the 
determination coefficient (R2) using the selected active pixels, and (d) optimization of the threshold (ρt) by maximizing R2 value for final active pixel selection and 
β estimation. 
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the ROI and camera was approximately 3 m (Fig. 8(d)). Three different 
signals were input into the shaking table: (1) a 1 Hz sinusoidal signal, (2) 
a chirp signal with frequency varying from DC to 3 Hz, and (3) a vi
bration signal recorded from a real bridge. 

First, vision and acceleration measurements under 1 Hz sinusoidal 
signal excitation were used for automatic initial calibration. Fig. 9 
compares the estimation results of scale factor (β) with and without 
large motion in vision measurement (i.e., Step 1 in Section 3.1) and 
demonstrates the necessity of removing large motion for β estimation. In 
the presence of large motion, no linear relationship was observed be
tween the filtered phase and filtered displacement from the acceleration 
measurement owing to the serious phase-wrapping issue (Fig. 9(a)). 
However, a linear relationship was clearly observed after the large 
motion was removed, and β was estimated to be − 3.8093 mm/rad with 
R2 equal to 0.9821 (Fig. 9(b)). Here, scale factor (α) was estimated as 
2.11 mm/pixel. 

Next, the performance of the proposed technique was compared with 
that of an existing technique [24]. The existing technique used an IMF 
algorithm to estimate the displacement from vision measurement, which 
was further fused with the acceleration measurement for the final 
displacement estimation. The vision-based displacements estimated 
using the proposed and existing techniques are compared in Fig. 10. The 
noise levels of the estimated vision-based displacements were evidently 
reduced by using the proposed hybrid CV algorithm, resulting in a 
maximum 53% RMSE reduction. Table 1 lists the final estimated 

displacements obtained using both the techniques [24] after fusing 
vision-based displacement and acceleration measurements. The pro
posed technique reduced the RMSEs of the estimated displacements by 
approximately 42% compared with the existing technique. Note that the 
existing POF algorithm [26] could not estimate the displacement 
correctly in this test owing to the serious phase-wrapping issue, and the 
corresponding estimation results were omitted. 

4.2. Outdoor shaking table test 

The proposed technique was validated using an outdoor shaking 
table test, as shown in Fig. 11. The accelerometer and vision camera 
used in the previous test were installed on a steel plate (Fig. 11(a)). The 
shaking table, which was rigidly connected to the plate, moved the plate 
vertically. A window of a surrounding building at a distance of 
approximately 63 m was selected as the fixed target (Fig. 11(b)), and the 
camera FOV and initial ROI, which included the selected target, are 
shown in Fig. 11(c). Other experimental parameters were identical to 
those used in the previous indoor single-story building model test unless 
stated otherwise. 

First, vision and acceleration measurements under a sinusoidal signal 
excitation of 1 Hz were used for automatic initial calibration. Next, 
displacements were estimated using both the existing [24] and proposed 
techniques under three different excitations, and the RMSEs of the 
estimated displacements are summarized in Table 2. The proposed 

Fig. 6. Overview of the fusion of asynchronous vision and acceleration measurement using the AMKF for structural displacement estimation.  
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Fig. 7. Flowchart of the proposed hybrid CV algorithm for displacement estimation from vision measurement.  

Fig. 8. Configuration of indoor single-story building model test: (a) overview, (b) force-balance-type uniaxial accelerometer and a vison camera installed on the top 
of the building model, (c) LDV used for reference displacement measurement, (d) 3-m distance between the shaker and the wall, and (e) camera FOV and the 
initial ROI. 
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technique reduced the RMSEs by 51% compared to the existing tech
nique and estimated the displacement accurately with less than 1.5 mm 
error. 

In addition, the performance of the proposed technique was 
compared with that of an existing POF algorithm [26]. Note that the 
existing POF algorithm used only vision measurements; therefore, only 
vision-based displacements estimated by the POF algorithm and the 

proposed hybrid CV algorithm were compared. Because the vision 
camera was far from the target, only subtle pixel movement existed in 
the vision measurements, and phase-wrapping did not occur in this test. 
Thus, the main differences between the proposed hybrid CV and the 
existing POF algorithms are as follows: (1) active pixel selection and (2) 
scale factor estimation (Table 3). 

Fig. 12 shows the initial ROI and active pixels selected by the pro
posed and existing algorithms. For the existing algorithm, the threshold 
of active pixel selection was 1/5 of the mean of the 30 pixels with the 
largest amplitudes within the ROI. The vision-based displacements 
estimated by both the algorithms are compared in Fig. 13. The proposed 
hybrid CV algorithm was able to accurately estimate the displacement 
from vision measurements with an error of less than 2 mm. However, 
large errors are observed in vision-based displacements estimated using 
the existing POF algorithm, which are mainly attributed to inaccurate 
scale factor estimation. 

Next, the active pixel selection effectiveness of the proposed initial 
calibration algorithm was validated. Active pixels were selected in three 
different ways: (1) all pixels within the ROI, (2) pixels with a local 
amplitude above a threshold [26], and (3) pixels selected by the pro
posed algorithm. The corresponding scale factors (β) were estimated 

Fig. 9. Estimation results of the scale factor (β): (a) without and (b) with large motion.  

Fig. 10. Comparison of vision-based displacements estimated using the existing IFM [24] and proposed hybrid CV algorithms in the indoor single-story building 
model test: (a) 1 Hz sinusoidal signal, (b) chirp signal, and (c) recorded real bridge vibration excitation. 

Table 1 
Comparison of RMSEs of finial displacements estimated using the existing and 
proposed techniques after fusing vision-based displacements and acceleration 
measurements [24] in the indoor single-story building model test.  

Excitations Existing technique 
[24] (AMKF + IMF 
algorithm) 

Proposed technique 
(AMKF + Hybrid CV 
algorithm) 

RMSE 
reduction 

1 Hz sinusoidal 0.237 mm 0.129 mm 45.57% 
Chirp 0.262 mm 0.200 mm 23.66% 
Recorded real 

bridge 
vibration 

0.291 mm 0.130 mm 55.33% 

Average 0.263 mm 0.153 mm 41.90%  
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using the proposed algorithm. As shown in Fig. 14, active pixels selected 
using the proposed initial calibration algorithm presented the largest R2 

value. Displacements were then estimated from vision measurements 
using different active pixels and their corresponding β. The best per
formance was achieved using the active pixels selected by the proposed 
algorithm under all three excitations, as listed in Table 4. 

The computation costs of the proposed technique have been 
analyzed on a desktop PC configured with Intel i7–6700 CPU (3.4 GHz) 
and 8 GB RAM. Though the time required for the image acquisition and 
processing varied slightly at different time steps, the averaged time was 
less than 0.1 s, allowing real-time vision-based displacement estimation 

at 10 Hz. Then, by fusing the vision-based displacement at 10 Hz with 
the acceleration measurement at 100 Hz, the final displacement was 
estimated at 100 Hz in real-time. 

5. Field test on a pedestrian steel box-girder bridge 

The proposed technique was validated on a pedestrian steel box- 
girder bridge located in Daejeon, Korea, and experimental configura
tion is shown in Fig. 15. The displacement was estimated at 1/4 span 
point of the bridge, and the same vision camera and accelerometer 
(Fig. 15(c)) were placed at the displacement estimation location. A 
Polytec RSV-150 LDV (Fig. 15(d)) was installed on the ground to mea
sure the reference displacement with less than 1 μm resolution [41], 
which was used to evaluate the displacement estimation performance of 
the proposed technique. Fig. 15(e) shows the FOV of the camera. A 
traffic signal structure at a distance of approximately 2 m was available 
in the FOV, and the ROI was initially cropped to cover the structure 
joint. Three different excitations were considered: (1) Case 1: four 
people jumping at 1/4 span point, (2) Case 2: two people jumping at 1/4 
span point and sixteen people slowly passing the bridge; and (3) Case 3: 
sixteen people slowly passing the bridge. 

Initial calibration was performed using measurements of the camera 
and the accelerometer when four people jumped at 1/4 span point (Case 
1). Two scale factors (α and β) were estimated as − 1.233 mm/rad and 
1.359 mm/pixel, respectively. The displacements estimated using the 
proposed technique under all three excitations were compared with 
those estimated using the existing technique [24] (Fig. 16). Although the 
displacement of the bridge was relatively small, up to a few millimeters, 
the proposed algorithm could estimate the displacement accurately with 
an error of less than 0.06 mm. Compared to existing techniques, the 
proposed technique reduces the RMSE by approximately 63%. 

Next, a performance comparison with the existing POF algorithm 
[26] and the effectiveness validation of the active pixel selection were 
performed, as in the case of the outdoor shaking table test, and the re
sults are summarized in Tables 5 and 6, respectively. Large errors were 

Fig. 11. Configuration of the outdoor shaking table test: (a) sensor setup, (b) 63-m distance between the vision camera and the target, and (c) FOV of the vison 
camera and the initial ROI. 

Table 2 
Comparison of RMSEs of the finial displacements estimated using the existing 
[24] and proposed techniques in outdoor shaking table test.  

Excitations Existing technique 
[24] (AMKF + IMF 
algorithm) 

Proposed technique 
(AMKF + Hybrid CV 
algorithm) 

RMSE 
reduction 

1 Hz sinusoidal 2.66 mm 1.28 mm 51.88% 
Chirp 3.18 mm 1.42 mm 55.35% 
Recorded real 

bridge 
vibration 

2.29 mm 1.25 mm 45.41% 

Average 2.71 mm 1.32 mm 51.29%  

Table 3 
Comparison between the existing POF and proposed hybrid CV algorithms.   

Active pixel selection Scale factor 
estimation 

Existing POF 
algorithm [26] 

Pixels with the local amplitude above 
1/5 of the mean of the 30 pixels with 
largest amplitudes within the ROI 

Eq. (3) 

Proposed hybrid 
CV algorithm 

Automatic initial calibration Eq. (4) with 
automatic initial 
calibration  
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again observed in the displacements estimated using the existing POF 
algorithm owing to the inaccurate scale factor estimation (Table 5). The 
active pixels selected by the proposed algorithm achieved the best 

displacement estimation performance under all three excitations, as 
shown in Table 6. 

Finally, displacement estimation performance of the proposed 

Fig. 12. (a) Initial ROI in the outdoor shaking table test, and the corresponding active pixels selected by (b) existing POF algorithm [26] and (c) proposed hybrid 
CV algorithm. 

Fig. 13. Comparison of vision-based displacement estimated using the existing POF algorithm [26], and proposed hybrid CV algorithm in the outdoor shaking table 
test: (a) 1 Hz sinusoidal, (b) chirp, and (c) recorded real bridge vibration excitation. 

Fig. 14. Comparison of scale factors (β) estimated using (a) all pixels with ROI, (b) pixels with the local amplitude above a threshold [26], (c) active pixels selected 
by the proposed initial calibration algorithm. 
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hybrid CV algorithm were compared with the existing FM algorithm 
[18], and the results are summarized in Table 7. Because the displace
ments of the bridge were only a few millimeters, subtle pixel translations 
of the target were produced in vision measurements. Considering that 
the proposed hybrid CV algorithm is more sensitive to subtle pixel 
translations of the target compared to the existing FM algorithm, it 
reduced the RMSEs of the estimated displacements by approximately 
74%. 

6. Conclusions 

This paper describes a displacement estimation technique that fuses 
asynchronous acceleration and vision measurements at different sam
pling rates. The primary contributions of this study lie in the automatic 
initial calibration for active pixel selection and scale factor estimation, 
and development of a hybrid computer vision (CV) algorithm by 
combining phase-based optical flow and feature-matching algorithms. 
The feasibility of the proposed technique was experimentally validated 
through indoor single-story building, outdoor shaking table, and 

pedestrian bridge tests. The following conclusions were drawn from this 
study:  

(1) The hybrid CV algorithm significantly reduced the noise level of 
the displacement estimated from vision measurement compared 
to the feature matching algorithm. In addition, unlike the con
ventional phase-based optical flow algorithm, the hybrid CV al
gorithm successfully estimated displacement from vision 
measurement even in the presence of large structural 
displacement.  

(2) The proposed initial calibration algorithm selected active pixels 
without any ad-hc thresholding, and displacements estimated 
using the selected active pixels were better than those estimated 
using the active pixels selected by the existing threshold-based 
algorithm [26]. In addition, the scale factor estimated by the 
initial calibration algorithm resulted in approximately 78% 
RMSE reduction in displacement estimation compared to the 
scale factor estimated by the existing algorithm [26].  

(3) The errors of the final estimated displacements were reduced by 
approximately 50% in indoor single-story building, outdoor 
shaking table, and pedestrian bridge tests compared to the 
existing technique [24]. The overall RMSEs were 0.153 mm, 1.32 
mm and 0.043 mm for these three tests, respectively. 

Although the proposed technique shows a potential for practical 
applications in long-term continuous structural displacement moni
toring, there are still limitations that need to be addressed. Firstly, the 
proposed technique estimates only in-plane displacement. However, 
large-scale civil structures often exhibit displacements in all six degrees- 
of-freedom. In addition, the presented tests estimated displacement only 
for a short time period without explicitly considering environmental 

Table 4 
Comparison of RMSEs of the displacements estimated with different active pixels 
in outdoor shaking table test (Unit: mm).  

Excitations All pixels 
within 
ROI 

pixels with the local 
amplitude above a 
threshold [26] 

pixels selected by the 
proposed initial 
calibration algorithm 

1 Hz sinusoidal 1.84 1.62 1.43 
Chirp 2.38 1.88 1.78 
Recorded real 

bridge 
vibration 

1.69 1.37 1.37 

Average 1.97 1.62 1.53  

Fig. 15. Configuration of pedestrian steel box-girder bridge test: (a) overview of the bridge, (b) sensor setup, (c) an accelerometer and a vision camera used for 
displacement estimation, (d) an LDV for reference displacement measurement, and (e) FOV of camera and the initial ROI. 
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variations such as illumination and temperature. Future work is war
ranted to address these limitations, and to make the proposed technique 
more attractive for long-term continuous monitoring of real structural 

displacements. 
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